找不到文档

请联系客服

一、找不到需要的文档,请联系客服

各种述职自查等报告、工作学习计划总结、表扬信

思想汇报、心得体会、申请报告、发言稿、新闻稿

活动策划方案、演讲稿、推荐信、保证书、读后感

合同协议、倡议书、等各种条据书信

二、微信客服

欢迎收藏本站,按 Ctrl+D 即可将本站加入收藏夹。
祈祷工作报告网qdbeian.com > 免费论文 > 哲学论文

对量子力学互补性诠释的理解_其他哲学论文十篇

2022-04-17

对量子力学互补性诠释的理解_其他哲学论文十篇

哲学论文】导语,您所阅览的此篇文章共有99316文字,由乐伟秋潜心整理,上传到祈祷工作报告网qdbeian.com!计算机控制系统的控制程序具有有限状态自动机(FA)的特征,可以用有限状态机理论来描述。有限自动机(Finite Automata Machine)是计算机科学的重要基石,它在软件开发领域内通常被称作有限状态机(Finite State Ma对量子力学互补性诠释的理解_其他哲学论文十篇欢迎大家收藏,希望能帮到你!

对量子力学互补性诠释的理解_其他哲学论文 篇一

量子力学在本世纪二十年代就形成了其形式系统,然而它的物理意义,亦即对它的解释却一直众说纷纭,时至今日仍是物理学家和哲学家关注的一个中心问题。虽然在其体系形成后不久,玻尔就在玻恩的几率诠释和海森堡的测不准原理基础上,提出了系统一贯的互补性诠释并成为被普遍接受的正统诠释,但互补思想的确切内容却始终没有人能说得清,因为玻尔总是把他深奥的思想,深深藏在晦涩冗长的深思熟虑的句子和事例性的说明之中,而没有任何现成的条条款款,这就使得无论接受它的还是反对它的人都给出了各式各样不同的理解,所以互补含义亟需澄清。关于量子力学诠释研究的主要问题也都与互补性诠释密切相关(如因果性问题、几率性问题、关于测不准关系的理解问题、测量问题、完备性问题等),这些问题的澄清和解决也首先需要正确理解互补性诠释。

1.互补性诠释的逻辑结构

与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。wWW.meiword.COm互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行和解释,然后从这种对观察结果的中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。

互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客体的作用。在经典物理中,仪器对客体的作用比客体本身的物理量小得可以忽略,即使不能忽略也能通过对过程的将它剔除,但在对原子客体的观察中,仪器对客体的作用与客体的物理量相比拟,其作用过程又是非连续的,所以不可能将仪器的作用剔除,这样,观察结果中就必然包含了观察仪器的作用,而不是代表客体本身的现象,对客体的描述也必然只能是观察下的客体的描述,而不可能是对没有观察的孤立客体本身的描述,所以对客体的任何描述都依赖一定的观察,没有观察,就没有可描述的确定的现象,即使没有对应于客体本身的观察,也必然存在与之相关的其它客体的观察。这不是说,没有观察,现象世界就不存在,而是说,没有观察,确定的客体就不存在,没有观察,世界上可以发生许多事件,但我们却不能确定对它们的描述。

观察对描述的重要性和观察中仪器对原子客体的作用的不可分性是原子现象及其描述的特殊性之所在。正是观察的特殊性带来了概念的定义和描述上的新特点,从而带来描述方式的根本改变和实在的新特点。

在对原子客体的观察中,仪器与客体间的不可剔除的相互作用,使得对客体的时空确定和态的确定间成为互斥的。当我们通过一种仪器如刚性标尺和时钟对客体进行时空的观察和确定时,观察中仪器的作用和对时空的确定条件,排斥对客体的态进行定义,因为这种确定时空的仪器对客体的作用所带来的客体的态的改变是无法确定的,从而客体在另一种确定它的态的仪器下所确定的对态的定义的条件被破坏,而不再可能对时空观察下的客体进行态的定义。当我们利用另一种仪器对客体的能量和动量进行观察和定义时,由于仪器与客体相互作用的时间的不确定性,使得对客体的时空确定成为不可能。客体的时空标示和态的描述间的互斥,不仅在于时空观察带来的态的不可控制的改变,而且也是定义客体两种属性的条件的互斥的表现。态的定义要求消除除态的观察外的任何观察的外来干扰,而时空的观察必包含有对客体的干扰,两种描述所代表的定义的理想化和观察的理想化的互斥,使得它们不能再统一在一种描述图景中对客体进行时空中的因果描述,只能对客体进行这两种互斥的描述。因为它们都是对客体的描述,并且只有两种描述一起才能构成对客体的全面描述,所以二者是互补的。这就是对原子客体的互补性描述方式。

量子公设所蕴涵的仪器与客体的不可避免的相互作用是互补性诠释的一个逻辑起点,作用量子的公式所包含的波粒二象性是互补性诠释的另一逻辑起点。

时空和能量动量描述的互补性意味着经典的粒子图象和波动图象都不完全适于原子客体,它们只是诠释两种原子现象的不同尝试。在这种诠释中,经典概念的局限性以互补的方式表现出来。在粒子图象中,因果要求的满足必伴随对时空描述的放弃;在波动图象中,时空传播规律的描述必伴随因果描述的放弃而只能代之以统计的考虑。如果我们不把时空描述和因果描述看作互补的而坚持经典的时空概念,我们就必会面对光和物质有时表现象波有时又象粒子的矛盾,所以,光和物质粒子的本性不是经典描述的粒子或波,而是时空和因果的互补描述的波粒二象性,即其时空描述遵循波动的叠加规律、其因果描述遵循粒子的守恒定律的两种图象的互补。任何将客体看作经典波或经典粒子的解释都是行不通的。如薛定谔将原子客体看作经典电磁波的电磁波解释,就遇到波包的扩散、波是位形空间而不是真实空间的波以及波函数与测量与所选择的非对易的可观察量有关等问题,这些问题恰恰反映了经典波概念对原子客体描述的局限性。统计系综诠释虽把原子客体看作粒子,但却不是经典的能够对它作时空描述的粒子,而是只能对粒子系综的统计规律进行描述的粒子,因果描述和时空描述的互补性被包含在系综的能量、动量和时间空间的统计散差具有反比性的特殊统计性中。隐变量理论虽然为量子力学描述建立了一个亚量子层的因果描述,但它对可观察的量子层的描述与量子力学的统计描述完全一样,而且在其亚量子层的因果描述中也加入了与经典描述不同的隐变量与测量的相关性。所以,因果描述和时空描述的互补性是不可避免的,用经典的粒子图象或波动图象来解释所有原子现象都会遇到逻辑困难,因而必须将它们加以修正并使它们互补起来。

2.对量子力学描述的统计性的理解

统计性是量子力学描述的一个基本特点,统计或几率概念是量子理论的基本概念,理解它是理解量子力学的关键所在,各种诠释的主要分歧也在于此。按照互补性诠释,统计性是量子性的必然结果,或者说统计性是逻辑地包含在量子概念之中的。因为作用量子的存在本身就意味着原子过程不再是因果连续的,而是非连续的个体性过程,对于这种过程不可能进行因果描述,而只能对个体事件进行统计描述,而且量子公设还意味着观察对原子客体状态的不可控制的改变,从而使我们无法通过观察建立起客体运动变化的因果规律。量子概念中所蕴涵的时空的确定和能量动量的确定间的互斥关系,也使我们不可能给出客体的一个初始状态而对客体进行因果性的描述和预言,所以,量子性必意味着描述的统计性,对非连续的原子过程只能进行几率描述。描述恰当地反映了原子过程的非连续的变化的可能性而不是因果连续变化的必然性,它对原子客体的物理量的描述不再是具有唯一确定值,而是按一定的统计分布具有一系列的值,这些值及其统计分布就是对原子客体的这一物理属性的描述,而量子力学对原子客体的物理量的值谱和统计分布的变化规律的描述就是对原子客体的统计变化规律的描述。这种由量子公设带来的统计描述也必然包含描述的互补性,只有通过时空描述和能量动量描述的互补性才能理解对原子客体的统计描述的这些特点。量子力学描述中波函数按薛定谔方程随时间的演化,往往给人一种感觉,它就是对客体的态或客体的统计性(或趋向性)的因果变化的描述。其实,薛氏方程并不能满足人们对因果描述的追寻,虽然我们可以从波函数中找到关于客体的所有属性的描述,但是波函数的随时间的演化并不代表客体的状态的因果变化,因为波函数与客体的行为并无对应关系,只有波函数的模方才代表客体的几率,波动方程只是以恰当的数学形式包含了对客体满足叠加原理的波动属性的描述,而这种描述的合理性是以客体作为粒子出现的几率对波函数的诠释来达到的,波动方程的解不是描述代表客体的波,而是描述代表客体的粒子的几率,波动方程描述中对量子描述的互补性就表现在这里。所以波动方程并不表示对客体的因果描述,而是以波动描述形式对粒子几率进行描述的波-粒互补性的表现。

3.对测不准关系的理解

测不准关系是量子力学中的一个重要内容,它是量子力学形式体系的一个直接数学结论,所以接受量子力学的人都能接受它,但对于这个数学公式的理解却千差万别。由于测不准关系表现为对物理量的测量的限制关系,所以,不少早期的量子力学教科书把它作为量子力学的一个核心内容和逻辑基础或操作基础,但是,正如karl r.popper所指出的,从薛定谔方程可导出测不准关系而从测不准关系导不出薛氏方程,这说明测不准关系应是某种基础的推论。在互补性诠释看来,测不准关系是量子公设所蕴涵的波粒二象性的结果,它表现的是经典概念的可定义的精确度间的互补关系。玻尔从关于作用量子的基本公式et=iλ=h出发,从其中所蕴涵的经典概念的矛盾推出关于这些经典概念的可定义的最大精确度间的普遍反比关系即测不准关系,从而使这个关系代表了时空和因果描述间的互补性的一种简单的符号化表示,测不准关系轭物理量的测量精确度间的反比关系恰当地反映了两物理量的互斥互补关系。

海森堡把他所发现的测不准关系看作是对经典概念的适用性的限制和对经典物理量的可确定程度的限制,并且正是由于这种不确定性导致因果律的失效和量子力学的统计描述,这种解释带有明显的操作论和实证论倾向,是一种只讲其然而不讲其所以然的解释。互补性诠释则给出了其所以然的说明,是对测不准关系的更深层的理解,避免了上述操作解释的弊端。如海森堡把物理量的测量的不确定度解释为测量的操作结果,而不是不同概念的可定义和可观察的互补性的结果,就会导致由于我们测量和认识能力的限制,使我们对本来可能存在精确值和因果性的客体只能作有限精确度和统计描述的实证论的和不可知论的问题。测不准关系所表征的一种物理量的测量中仪器的作用导致另一种物理量的不确定,证明了互补性诠释的仪器对客体的不可控制作用的说法,但是这种仪器的干扰作用是对原子客体进行描述所必需的,也是量子力学描述中所包含的,而不是对客体进行描述所要排除的。

popper的统计系综诠释认为,测不准关系的含义是两个正则共轭变量的标准偏差之积有一下限n/4π,它不象互补性诠释的测不准关系是从对理想实验的得到的,而是量子力学形式体系的逻辑数学推论,而且由于现在实际的对测不准关系的实验检验还不能达到个体粒子测量所要求的精确度,而往往是对许多粒子的统计平均的偏差的测量,所以统计系综诠释显得比互补性诠释有更坚实的经验支持。我认为,也许统计系综诠释较互补性诠释在数学上更严密,但互补性诠释对量子性的描述特点的显得更深刻。

4.对描述的完备性问题的回答和理解

完备性问题和测量问题是量子力学诠释之争的两个焦点问题,近几十年量子力学的基础研究主要围绕这两个问题展开且使问题不断演化,并挖掘出不少新的内容,互补性诠释无论对这两个问题的提出还是发展都有着直接的影响,而它对这两个问题的解释也成为互补性诠释本身的重要内容。

完备性问题是爱因斯坦与玻尔论战的第三次交锋中在著名的e-p-r论文中提出的。文中通过一个e-p-r实验论证了量子力学的描述不是对实在的完备描述。此文引起的首先是关于何为实在的讨论,后来讨论的焦点转移到关于e-p-r关联究竟意味着非局域性、非因果性还是不可分离性的问题。

e-p-r的论文从没有干扰而能预言的客体的物理属性为物理实在这一实在概念出发,通过大家所熟知的e-p-r实验,论证了量子力学描述不是对实在的完备描述。简述如下:相互作用后的两粒子,按量子力学描述,可以通过对第一个粒子的两非对易物理量的测量而不加干扰地得到对第二个粒子的同样的两非对易物理量的预言,既然是不加干扰且两粒子相距无限远,第二个粒子的两非对易量虽对应于第一个粒子的不同时的两次测量,但却是同时属于第二个粒子的物理实在,否则就得假设两粒子间具有超距作用;e-p-r又认为,完备描述应同时对同时存在的物理实在进行描述,但量子力学的描述却将对非对易的两个物理实在的描述看作互补的,即对一个进行精确描述时对另一个则不能进行同时的精确描述,所以e-p-r得出结论说,量子力学蕴涵着e-p-r悖论,其原因是量子力学描述不完备。

大量实验证实了e-p-r关联的存在,也证明了量子力学描述的成功,但如何解决e-p-r悖论却仍有两条道路可以选择,这便是修正e-p-r的两个前提,或者修正实在概念,或者修正分离原理(包括局域性原理和可分离性原理),前者是玻尔对e-p-r的回答,后者是隐变量实在论者对e-p-r关联的解释,虽然实在概念不同(一个是必包含有观察的实在;一个是不包含观察干扰的实在),但却都包含了仪器与客体的状态、客体与其有相互作用的其它客体的状态的相关。

互补性诠释通过修正实在概念,即认为实在必包含有观察的干扰来解决e-p-r悖论。正如互补性诠释的逻辑前提中所认为的,任何描述必是对观察的描述,任何预言也必是对观察的预言,任何实在也必是观察的实在而不是自在的实在,观察的作用必包含在实在之中,观察的作用不仅意味着仪器对客体的直接的物理作用,而且意味着一种仪器所特有的对仪器和所观察客体的整体的反映方式和描述方式,所以客体的描述和实在必与进行观察的仪器的类型相关,无论是直接的观察还是象e-p-r实验中的间接观察。这就是量子力学中的相对性,即客体状态与仪器的相对性。所以e-p-r实验中对第二个粒子的非对易物理量的预言所对应的是不同的测量,因而仍是不同时的实在,对它们的描述也是互补的描述而不能是同时的描述,所以这与量子力学描述并无矛盾。e-p-r关联所反映的是仪器类型和描述预言类型及实在类型的必然联系和仪器作用的不可细分所带来的仪器与客体实在的不可分,对第二个粒子的描述与对第一个粒子测量的关联,恰恰表明了观察和描述类型一致的要求和仪器与所描述客体实在的不可分性,不是仪器或第一个粒子对第二个粒子的超距作用使第二个粒子的实在发生了改变,而是它们的实在本身就是一个不可分的整体,它们的状态必然相关而不是的,所以互补性诠释在新的实在概念中包含了对可分离性原理的否定,解决了e-p-r悖论。其实,互补性诠释虽然是在对e-p-r悖论的回答中明确了它的新的实在概念,但它的仪器与客体的实在的不可分性,仪器与客体状态、描述的不可分性早在como演讲中作为互补性诠释、互补描述的逻辑前提就已经提出来了,难怪戈革先生说玻尔提前八年预先回答了e-p-r佯谬。

5.对测量问题的回答和理解

测量问题顾名思义就是关于测量过程的解释和描述问题,由于在微观测量中仪器对客体的作用使客体发生了不可忽略的改变,从而使微观测量不再象经典宏观的测量那样可以忽略仪器对客体的作用,直接将客体对仪器作用产生的仪器上的读数当作客体本身的状态,微观测量的结果是测量后客体的状态,它与测量前客体的状态不同。由测量引起的客体状态的突变叫波包收缩,如何解释和描述波包收缩亦即测量过程中客体状态的变化就是量子力学的测量问题。在量子力学描述中,描述客体状态的ψ(x)的变化有两种方式,一种是按薛定谔方程随时间的因果演变,另一种是测量时突变为所测力学量的一个本征态ψ[,n](x),也就是客体由各种可能值的几率分布变为按一定几率实现的确定值,如果测量前的统计分布 ,测量后的统计分布 ,其中各本征态的相干项消失了。为什么测量时客体状态要变为本征态?为什么相干项消失?这些问题成为量子力学测量问题的中心问题。各种测量理论大都力图通过仪器与客体的相互作用过程,并以薛定谔方程来描述这一过程以求找到问题的解答。互补性诠释认为,波包收缩和干涉项的消失是由一种描述方式向互补的另一种描述转换的结果,这种结果的出现是由互补的两种描述的定义的条件不同和观测中仪器和客体的相互作用关系不同造成的。

首先,ψ(x)所表示的是如果测量客体的位置,其位置分布将是怎样的,而不是说测量前客体的状态是怎样的,|ψ(x)|[2]表示的是在x处找到粒子的几率。算符x在坐标表象中对应于确定值x的本征函数是δ(x-x),将ψ(x)按x的本征函数展开即 ,虽然包含有干涉项,但对于x[,i]处的几率|ψ(x[,i])|[2]与 是一样的,因为除x[,n]=x[,i]时δ函数不为零外其余都为零,所以干涉项根本就不存在,|ψ(x)|[2]本身就是指测量位置时测得各种位置数值的几率。

其次,双缝实验中双缝后的波函数ψ(x)是两缝的波函数之和即ψ(x)=ψ[,a](x)+ψ[,b](x)但当测定究竟粒子穿过哪一个缝时就会使干涉项消失,这是因为ψ(x)=ψ[,a](x)+ψ[,b](x)所蕴涵的测量条件和描述方式与|ψ(x)|[2]=|ψ[,a](x)|[2]+|ψ[,b](x)|[2]所蕴涵的不同,前者是在双缝后的屏幕上测得的干涉情况,后者是在各单个缝后测得衍射的相加,由于在测粒子是否穿过一个缝时,测量仪器对客体的作用使客体的互补物理量发生了改变,如测粒子动量时就会使它的位置发生不可控制的改变而引起位置的一个不准量,这种不准量将引起相等的条纹位置的不准量,从而不再出现任何干涉效应。所以这里的干涉项的消失不是客体测量前的自身状态向测量后状态的突变,而是观察干涉效应向寻求粒子轨道的描述的转变,是一种观测条件下的态向另一种观测条件下的态的转变,它所表现的是互补性现象在互斥的实验装置下的不同表现。

对于一般力学量q,ψ(x,t)可按q的本征值所对应的本征函数展开, 其中u[,n](x)为q的本征值q[,1]、q[,2]…q[,n]的本征函数,按量子力学,当测量到本征值q[,1]时,系统就处于本征态u[,1](x),其几率是|a[,1](t)|[2],但在观测到确定数值前,量子力学给出的是ψ(x,t)而不是q[,1]和u[,1](x),但实际上,所给出的预言和实际测得q[,1]的几率|a[,1](t)|[2]是一致的, ,由于u[,n](x)是正交归一函数系,u[*,m](x)u[,n](x)=0,当m≠n时,所以干涉项不出现, ,这就是说,ψ(x,t)给出的就是测量时各本征值出现几率的分布,对客体状态的由ψ(x,t)到u[,n](x)的转变只是对客体测量后所有可能状态的几率分布的集合预定到其中一个状态元素按相同几率实现的描述变化,而并不对应客体本身的在有无测量的不同条件下的状态的变化。

所以按照互补性诠释,由ψ(x,t)到u[,n](x)的波包收缩不是测量引起的测量前后客体状态的变化。测量肯定会引起客体的变化,但这种变化已经包含在ψ(x,t)中,而且不同类型的测量会引起不同的变化,这由所测得的不同类型的本征值和本征函数表现出来,如果 中有干涉项,那么新的测量所引起的变化还会表现在干涉项的消失上。因此,波包收缩中干涉项的消失是由互斥的测量导致的由一种描述向互补的另一种描述的转换造成的,而波包收缩中由对许多可能值的预言到其中一个值的实现的波函数的变化,只是预言条件的变化引起的统计预言的变化,而不对应客体本身的状态变化。

由此可见,在测量的波包收缩过程中,引起客体状态变化的是不同的测量的实验条件和它们对客体的不同类型的作用,关于客体知识的变化引起的是对客体的统计预言条件的变化,而不是客体本身的状态变化,所以,这里没有任何主体的作用,也不需要引入主体意识的最后一瞥。冯.诺意曼之所以需要引入人的最后一瞥,是因为他把仪器在测量中的作用当作一个纯粹的量子客体,而没有看到在仪器身上所必须兼有的使确定的观察结果和经典概念的适当运用成为可能的特性,这样一来,就象冯氏所的那样,我们的观察和描述就必然要无限后退,直至求助于意识的最后一瞥。

当然,从量子现象的普遍性上讲,仪器也与微观客体一样具有量子性,但量子性又必须通过我们的宏观观察和经典概念来观察和描写,所以,仪器又是认识的一个逻辑起点,它必须能够直接被观察且能用经典概念进行描述。只有这样我们才能通过仪器来观察和描述微观客体。仪器的这种既是量子客体又是宏观客体的二重性是互补描述的基础。我们的认识必须从直接观察和由这种观察而定义的概念开始,但又必须对超出这种直接观察和日常概念框架的新现象进行逻辑一致的描述,这就必然导致概念框架和描述方式的改变。如果没有仪器的直接可观察性,就不能得到任何微观客体的经验、现象和可描述的东西,而如果没有仪器与客体的一致性,仪器也就不可能对客体的信息进行反映记录,所以,仪器的二重性是认识微观客体的必然要求。这并不会引起宏微分界问题(即把世界分为宏观和微观两个截然的世界的问题),而只意味着一个可直接认识,而另一个则需借助于宏观仪器的观察,因为量子性是客观物体具有的普遍特性,只是由于这种特性超出了日常概念的理解范围而必须借助于对日常概念的修正来达到对它的理解。量子性的认识特殊性并不在于它的微观尺度,而在于它的非连续的、个体的观察条件与我们建立日常概念时的连续的、无限可分的观察条件不同,这种不同就需要我们对各概念的适用条件和相互关系进行修正。实际上,宏观客体的观察也一样需要借助于我们建立概念时的观察,这里不是宏观微观的不同,也没有二者的截然分界,只有所描述现象在多大程度上与我们建立概念的观察条件的符合程度的不同,所以,微观描述一方面是对经典描述的修正,一方面又以经典概念为基础,这不是一个逻辑矛盾,而是意味着微观描述必须以可直接理解的经典概念为起点,通过对这些概念在新的观察条件下适用程度和相互关系的修正来达到对微观现象的合理描述,这不是互补性诠释的矛盾,而是理解量子概念与经典描述的矛盾所必需的。

对于企图用量子理论来描述测量过程以求得到一个统一的描述的做法,互补性诠释认为是不会有结果的。因为我们对微观现象的观察和描述必须借助于我们的日常的观察和概念,而这种观察和概念建立的条件是无法形式化的。

主要参考文献

1] 玻尔:《原子论与自然的描述》,:商务印书馆,1964。

2] 玻尔:《原子物理学和人类知识》,:商务印书馆,1978。

3] 玻尔:《原子物理学和人类知识续编》,:商务印书馆,1978。

4] 玻尔:《尼尔斯·玻尔集》,:商务印书馆,科学出版社,1—9卷。

生物学结构转换思想与目的性概念_其他哲学论文 篇二

摘要:本文主要探讨以基因学说和dna 双螺旋模型为核心的现代生物学的方基础,指出机械还原纲领虽然对现代生物学的发展有其巨大贡献,但对于探索生命现象的复杂性还存在根本上的限制;有机论虽然肯定了组织结构的核心地位与可考察性,却又说不出生命整体是如何“突现”出来的。通过对皮亚杰结构主义观点的阐明,本文认为现代生物学的发展受制于一种关于结构变换的目的性概念框架,并着重了这种概念构架的基本内容、它与因果性概念的关系及其科学认识功能。

关键词:整体性 结构变换 目的性

在现代生物学的发展中,基因学说与dna双螺旋模型的建立, 使人类对生命奥秘的探索进入到一个新的阶段,并使生物学知识体系发生了深刻的变化。这种知识的增长绝不是偶然的,它显然受制于一种新的科学方与概念框架的形成,关系到结构转换概念的使用与目的性概念的重建。本文所要探讨的正是这一问题。

基因学说与dna双螺旋结构理论,作为现代生物学的理论基础, 使人类对生命现象的认识深入到分子层次,与此同时也引出了一系列崭新的问题。这一情势正象有人比喻的那样,当我们打开门进入一个长廊之后,又会发现里面仍有很多未打开的门。那么,人类这种新探索究竟说明了什么呢?

显然,现代生物学这一巨大进步宣告了活力论的破产,因为它证明在生命机体中根本不存在活力论者所说的那种非物理化学特质的、非广延性的精神性实体——活力;它表明生命机体中的主导因子原来就是基因或dna分子——它是在电子衍射实验中可以观察到的东西, 是通过遗传工程可以加以改变的对象。wWW.meiword.CoM同时,它也证明活力论者所说的那种不能用物理化学术语加以考察的生命特质,并不构成一种科学解释。活力论主张活力不能用空间、时间、质量,原子、电荷等物理化学语言来表达,即认为生命特质不能表达为任何物理化学术语,这实际上是拒斥对生命本质的考察,表明活力并不是可用于科学解释与预测的实证科学概念。由于基因学说与分子生物学的发展,过去曾作为生命奥秘的大量生物学问题,如遗传与变异、生长发育、新陈代谢、体内调节等,在一定意义上都可用dna、rna、蛋白质、糖、脂肪等生物大分子及其生化反应来说明。这些术语作为实证的物理化学语言,对于生物学事实的解释与预测是卓有成效的。

现代生物学成就无疑是机械还原纲领的一次巨大成功,但它是否证明了机械还原纲领对于生物学问题没有任何限制呢?显然没有。因为机械还原论旨在把有机体及其生命问题归结为粒子或场的相互作用及其在时空中运动变化的规律,并把这种规律看成是自然界的最基本的法则和对自然现象的最完备描述,认为对生命的科学阐明最终总可以归结为物理化学描述,而生物学知识的存在只是一种权益之计和人类暂时无知的表现。当这种方的有效性被加以扩大而推向极端时,它的固有局限性就会清楚地暴露出来。并且,这种局限性是一种根本上的限制,有着深刻的根源。

第一、这种根本上的限制来自于生命结构的整体性与历时性。现代生物学认为,生命机体是一个能自身调节的有若干转换机制的整体性结构。一方面,有机体的任何一个层次及其组成要素,虽然对于维持有机体的整体性和生命机能都有自己特殊的贡献,但它们都不能代替生命机体的整体性,都不能孤立地表现出生命现象。生命作为一个整体,只有通过机体各层次及其组成要素所形成的整体结构及其转换才能显现出来,并且只有在它与外界环境的反馈循环中才能得以实现。另一方面,生命机体组织结构与整体功能的高度复杂性与完善性是自然历史的产物,是整个自然界长期演化的结果。生物大分子也是如此,如e ·迈尔所说:“生物在分子水平也是独特的是因为它们具有贮存从历史上获得的信息的机制,而非生物就不是这样……一切生物都具有从历史演变进化而产生的遗传程序”。(,第17页)并且在生物演化的30多亿年中, 整个宇宙环境与地球表面都发生了不可逆转的变化,有机生命的独特性就是在长期不可逆的自然演化中一系列结构变换的结果。正是这种结构整体性与历时性使机械还原方法受到了根本上的限制。

现代科学是从两个方向达到这一认识的。一方面,玻尔通过对微观粒子运动的透彻理解,从作用量子的整体性达到对有机生命整体性的确认,指出:“生命本身的存在,不论就它的定义还是就它的观测来说,都应该看成生物学的一个不能进一步加以的基本假设,就如同作用量子的存在和物质的终极原子性一起形成原子物理学的基本根据一样。”([2],第24页)在玻尔看来,由于量子效应, 正象原子的稳定性在本质上不能用经典物理学来加以描述一样,生命的整体特征也不能完全用普通的物理化学定律来加以解释。另一方面,作为有机论者,一般系统论的创始人贝塔朗菲从“突现论”的观点论证了系统的整体性,认为“构成特征不能由孤立的各部分的特征来说明。因此复合体的特征与元素特征相比是‘新的’或‘突然发生的’……作为具有相互关系的部分的总体的系统必须设想为瞬时间形成的”[3]正因为这样, 生命机体结构具有不能还原为其组成要素与层次的整体特性。结构主义者皮亚杰在承认“一个整体并不是一个诸先决成分的简单总和”的前提下,既不同意“把整体看作先于成分”,也不同意把整体“看作是在这些成分发生接触的同时所得到的产物”,而认为“从结构这个术语的现代含义来讲,‘结构’就是要成为一个若干‘转换’的体系,而不是某个静态的‘形式’。”([4],第4—5 页)这里显然拒斥了活力论与“突现论”的主张,而把整体性看成是结构转换的结果。他指出:“如果象我们已经认为的那样,一个结构真的是一个能自身调节的有若干转换作用的整体性体系的话,那末有机体就是各种结构的原型了。”([4],第31 页)上述说法充分肯定了生命结构的整体性与历时性这一基本事实,指出对它的抽象因果并不是终究至极的,机械还原论本身是存在根本限制的。

第二、这种根本上的限制还来源于物理化学实验安排的非完备性。对于生命结构的物理化学考察,玻尔指出:“生物学研究的条件和物理学研究的条件是不能直接相比的,因为保持研究对象的活命的必要对前一种研究加了一种限制,这种限制在物理学中找不到它的对应。例如,如果我们企图研究一个动物的各种器官,直到能说出单个原子在生命机能中起什么作用的地步,那么我们就无疑地要杀死这个动物。在有关生命机体的每一实验中,必然要在各机体所处的物理条件方面留下某种不确定性;而这种想法也就提示说,我们必须留给机体的最小自由,将刚好大到足以使该机体对我们‘保守其最后秘密’的地步。”([2], 第11页)显然,如果想用一种实验装置来构成生命机体的所有原子的行为,就象原子物理学实验对单个原子行为所作的观测那样,那么这种实验装置便排除了维持机体生命活动的可能性。任何实验装置,只要它把生命机体控制到能用物理化学方式来准确描述的程度,就一定会阻止其生命活动的自由体现。在玻尔看来,正象在原子物理学的实验安排中,对于坐标与动量这样一些不可对易量的观察不能同时被满足一样,在有关生命现象的实验安排中,尽可能完备的物理学观察与生命的自由体现也不能同时被满足。即原子物理学实验与满足生命活动的生物学观察条件是不能相容的,不能同时实现的。在探讨生命结构时,任何物理化学观察都不可能是完备的、无条件的,都必须留给对象某种“最小自由”,以维护机体结构与行为概念存在的权利。

第三、这种根本上的限制来源于机械决定论时间概念和因果结构自身的局限性。严格的机械决定论研究纲领对于近代乃至现代实证科学的发展起到了巨大的推动作用。但正如普利高津指出的,这种方在引入时间的方式上却存在着很大的局限性,因为其严格决定论的因果规律对于时间反演具有不变性,时间变量只不过是作为一个可逆的几何参数而出现,因而物理坐标随时间向前与向后移动都是允许的,将来与过去起着同样的作用,它们相互等价、不加区分。这样,自然界就被描绘成了一个简单的静态的存在着的力学体系,一个没有组织结构与发展演化的世界,一个没有创造与有序的寂静的宇宙。这就构成了“存在的物理学”与严格决定论方法所固有的一个佯谬,因为“它为人们揭露了一个僵死的、被动的自然,其行为就象是一个自动机,一旦给它编好程序,它就按照程序中描述的规则不停地运行下去。”[5] 这显然与生物学所描绘的复杂的、演化的、丰富多采与生机盎然的自然相背离。这种佯谬不仅是时间问题,它显然来自于严格决定论概念框架或因果结构本身的局限性。为了不违背生物学的基本事实并摆脱这一困境,平衡态热力学在物理学中第一次引入了时间箭头,把熵增加的方向等同于系统自发演化的方向。但它所表征的时间对应于由不可逆过程所导致的无序增大的趋向,从而排除了系统自发产生有序的可能性,而仍与有机系统的组织化有序化过程相矛盾。正因为这样,普利高津才提出“耗散结构”与自组织概念,以与生物学结构变换概念相接轨。

第四、这种根本上的限制来自于有机组织中微观过程之本质上的偶然性与多自由度非线性耦合的随机效应。对于生命机体,当观察深入到微观层次时,常会涉及到量子力学几率概念所描述的随机性问题。如在生命机体中便存在着基因的自发突变与诱发突变。由于这种过程接近于量子过程的水平,而量子效应所涉及到的是微观对象之本质上的随机性,这就使我们在原子尺度上对生命系统进行严格决定论的因果描述受到了一种根本上的限制。另外,对于生命结构这样极端复杂的系统,当用物理学方法考察其运动状态时,也会遇到多自由度非线性耦合的随机效应问题。这种非平衡非线性系统在一定阈值条件下会出现混沌现象,它涉及到的是一种无法确定的系统内在的随机性,这完全是由于系统内部非线性因素的作用而不仅是外界的扰动所引起的。这样,我们在宏观状态上对有机系统进行严格决定论的物理描述,也受到一种根本上的限制。

另外,逻辑实证主义的尝试也表明,生物学定律在逻辑上是不能从物理化学定律推导出来的,即使在物理学中这种机械还原也只是部分有效。所有这些表明,机械还原论与严格决定论对于探讨生命问题确实是不充分的,它过于狭隘了。因此必须要有一种新的更广阔的概念构架,它既能否定、超越这种方的局限性,又能对其合理性加以整合、同化和补充。

那么,现代生物学究竟受制于一种什么样的科学方呢?对此,有机论者曾提出“突现论”的主张,强调了生物机体等级森严的组织秩序和各组成部分相互依赖的整体性,认为生命是机体整体结构所具有的功能,是机体各层次与诸要素在整体作用中的瞬时“突现”。有机论者注重了组织结构的核心地位与可考察性,它既否认关于生命本质不可进行物理化学考察的活力论观点,又否认关于生命问题之物理化学描述具有终极性与完备性的机械论观点。虽然这些思想都是合理的,但把它作为现代生物学的方基础似乎还不够,因为有机论只是断言整体性的存在,却又说不出整体性是如何“突现”出来的。

实际上,现代生物学的发展受制于一种关于结构转换的目的性概念构架。在这里,关于结构整体的守恒、协调、变换、建构等成了理论系统的核心概念,“……真正重要的事情,既不是要人必须接受成分,也不是要人必须接受这样的整体而又说不出所以然来,而是在这些居分之间的那些关系;换句话说,就是组成的程序或过程……因为这个全体只是这些关系或组成程序或过程的一个结果,这些关系的规律就是那个体系的规律。”([4],第5页)正是由于结构转换概念和“这些关系或组成程序或过程”的可理解性、可考察性、可说出“所以然来”,就使它们既与关于组成“成分”的因果性概念相关联,又与关于“全体”、“整体”的目的性概念相关联。

在谈到近现代生物学思想发展时,皮亚杰指出:“从总体上看,这些思想实际上动摇于所谓没有发生的结构主义和没有结构的发生主义之间,直到发生(或发展)和结构(在一般结构或关系整体的意义上)这两项最后被看作是相互依存的,也就是说,在循环过程中一个包含另一个。”([6],第128页)这里所谓的“没有发生的结构主义”是拉马克、达尔文进化论以前生物学思想的共同特征;而“没有结构的发生主义”则是拉马克、达尔文进化论的基本特征;作为两者的合题,结构与发生相互依存的思想是随着魏斯曼、孟德尔遗传学的发展才出现的。这时,结构主义与发生主义已融合在一起,它“使结构或组织、发生或发展这两重概念发生彻底的普遍化,以至人们认识到:一切发展都是组织,一切组织都是发展。”([6],第130页)魏斯曼、孟德尔之所以开辟了一个发生的结构主义的,是由于他们都提出了遗传因子的概念。对于基因来说,所谓发展就是一系列结构转换的阶梯,所谓结构就是组织、发展和变换中的共时性结果。因为“基因组本身不仅是经历长期变化的长期历史过程的结果,而且,由于它是一个共时性结构,所以,它也是贯穿于世世代代的连续新陈代谢的重构所造成的。尤其应该指出,基因组是形成活动(后成的)的源泉,就象它是转换的源泉一样。”([6], 第131页)

随着现代生物学的发展,由基因所决定的一切生命过程,如细胞内新陈代谢、细胞、生长发育与遗传变异等,都被解释成了机体中不同类型、不同层次的结构变换过程,其中结构基因所携带的遗传信息的复制、转录、翻译等是一切结构变换的基础与“源泉”。此外,生物种群的延续与进化也被归结成了“基因库”的遗传平衡及其变动过程,基因库对于一个种群来说就是一个不断建构的结构信息源。对于这种组织结构,按皮亚杰的说法,它们同时包含着两个相关的方面:一是结构在一系列转换中的保持与守恒,二是在结构守恒中的转化建构。这样,结构转换与结构守恒便是相互协调的:一方面结构发生转换,但它是保持守恒的,因为任何转换都是再平衡过程,并且先前的结构可整合到后成的结构中去;另一方面结构保持守恒,但它也是变换的,因为任何结构既是被构成的也是起构造作用的东西,并且结构的守恒过程是在一系列转化建构中实现的,组织结构借助于重构而不断加以更新。

可见,在现代生物学问题中,结构守恒与转换概念显然处于核心地位,结构的守恒变换似乎就成了一切生物有序现象的“终极原因”或自然目的性。因为这里所说的结构的守恒变换具有一种贯彻始终的连续性与不变性,过去、现在与未来都体现在统一的结构守恒变换之中;并且这种既发生建构又保持守恒的结构确实具有一种自主性或自由自决性。如莫诺在谈到生物形态发生时指出:“……生物结构证明了一种自主的决定论:它精确、严密,意味着对外界因素或外界条件有一种实际上的完全的‘自由’”。([7],第7页)除了自主的形态发生之外,莫诺还强调了繁殖的不变性,即生物“具有不加改变地繁殖和传递对应于自身结构的信息的能力,描述一个极其复杂的组织图式的极其大量的信息,原封不动地从一代传给了下一代。”([7],第8页)这两方面都属于生物结构变换的范畴。由于生命结构守恒变换过程的连续性、不变性,自主性与自由自决性,这就使一切决定于这种结构守恒与转换的机体器官、组织结构、功能行为以及各种生命活动在某种意义上都被赋予了一种目的性,似乎这一切都是由某种计划图式作指导的,都是在追求和实现某一种目的。这样,结构的自我建构与守恒交换就成了生物目的性的根源。

也许正是由于这种原因,在现代生物学文献中便经常出现各种各样的目的性概念或具有目的论色彩的术语。人们通过对传统目的性观念的科学限定、规定、改造和重建,而使它们获得了符合现代实证科学精神的较精确的含义。这些概念或术语主要有以下几种。

一是程序目的性。这个概念是美国生物学家e.迈尔提出来的, 他指出:“程序目的性过程或行为是由于某种程序的运行而目标定向的,程序目的性这词就意味着目标指向。”([1],第46页)事实上, 贮存在基因中的生物学程序即信息编码,是作为一种结构整体而发挥作用的,并充当指导一切生命过程的自主的结构图式,这就使机体中的各层次结构变换与功能行为都成为目标指向的了。这种生物学程序通过自身的基本守恒变换及其运行,决定着生物个体与种族的自我维持、延续、建造与演变,决定着生命世界的各式各样的合目的性行为。

生物学程序既是在长期物种进化中保持连续性与相对不变性的东西,又是可追溯到生命起源的历史演化的产物。为了探讨生物遗传的起源问题,艾根提出了“自复制催化超循环”这一重要概念,认为遗传信息是通过生物大分子的自组织实现的。起建构作用的超循环是由多种自复制单元(多核苷酸)通过催化链(多肽)整合起来的协同一致的复杂系统。在其自组织过程中,这种结构会由于不稳定、发生偶然性差错而导致选择和进化,但通过多重因果循环的反馈作用,系统可能会达到一种最适稳定状态,把偶然性差错减少到最低限度,这便是生物遗传的前身。它作为有机结构,既处于不断演化与调整之中,又在长期物种进化中保持着连续性与相对不变性。

二是进化的目的性。对此,不少学者提出异议,如e.迈尔就指出物种进化不是目的性过程,因为它不属于目标定向的范畴。但j. 莫诺却支持进化的目的性概念,认为进化本身就象是在完成一项“计划”或实现一种目的似的。莫诺之所以立足于这种看法,也许是由于他既坚持偶然性突变在物种进化中的创造作用,又坚持生物目的性结构模式在物种进化中的选择与调整作用所致。在他看来,由于基因突变可能会改变“生物遗传结构的唯一的贮存库”而导致物种演化,所以“……只有偶然性才是生物界中每一次革新和所有创造的源泉。进化这一座宏伟大厦的根基是绝对自由的、但又是盲目的纯粹偶然性。”([7],第84 页)同时他又认为:物种的惊人稳定性证明了dna 分子基本化学图式的不变性和“目的性系统的高度统一性”;在他看来,当基因突变导致蛋白质结构形态发生改变时,对于这种“新东西”,“首先要检验它同整个系统是否协调一致;因为这个系统中早已存在着限制它发生变化的条件,这些条件就是指挥实现生物体所设想的目的的无数个控制装置。因此,唯一可以被接受的突变,只是那些至少不削弱目的性器官的统一性的突变,这种突变在已经规定了的方向上进一步加强了这种统一性,并且(这也许是罕见的)开辟了新的可能性。”([7],第89页)可见, 莫诺在强调偶然性突变所引起的创新尝试的同时,又十分注重生命机体内在形式结构的选择、同化、综合与整合作用。其实正是这种结构守恒与形式建构的观念,使他经常谈到目的性器官、结构与机能等。

根据综合进化论,一个种群中所有个体所共享的基因库才是物种进化的基本单位和该物种的基本结构模式。一方面,它因遗传平衡(等位基因频率不变)而具有基本的结构稳定性与不变性,从而保证了物种遗传特性的世代延续;另一方面,由于遗传平衡破坏(等位基因频率改变)又在守恒中发生结构变换,从而导致物种遗传特性的变化。这里,由于基因突变、遗传漂变、自然选择所引起的基因相对频率的改变才是引起物种变化的创新作用。基因库作为目的性的统一结构,通过对这种改变的选择、综合、同化、整合与建构,才会在保持物种连续性的基础上推动物种的进化。因此物种进化是一个以基因库的建构为核心的目的性过程。

三是调节控制的目的性。维纳等人在控制论中已把反馈看作是一种目的性行为,指出:“‘目的论’,一词是用作‘由反馈来控制的目的’的同义语。”[8]这样, 目的性概念由于充分限制了内涵而获得了确定含义。人们往往把反馈的交互因果性等同于目的性。但从结构转换的观点看,反馈其实是一种维持结构守恒(平衡)与变换(寻的、适应)的目的性活动。

这种反馈调节在生命系统中是普遍存在的。即使在生物大分子水平上也存在调节控制问题。由此,莫诺“把蛋白质看作是生物的目的性行为的主要的分子作用者”,认为酶在分子水平上执行着“麦克斯韦妖”的功能。([7],第34页,45 页)因为细胞内新陈代谢需要完成数以万计的生物化学反应,而如此众多的化学反应的精确性与高效性是由酶的催化作用来维持的。并且如此众多的化学反应又形成了一个由无数条分支、汇合点和反馈循环所交织成的十分复杂的网络,其正常运行势必需要一个在许多环节上管理和控制各种化学活性的自动控制系统。这里,“基本的控制操纵是由作为化学信息探测器和转换器的特殊蛋白质所掌握的,”([7],第47页)如在乳糖系统中变构酶的调节控制作用。 变构酶的控制操纵是为了保证细胞内众多化学反应的协调统一,是以细胞新陈代谢,以及机体生长发育与繁衍为目的的,而后者作为机体的建构作用又需要把酶的支配调节作为必要手段。此外,机体的生命活动还与基因控制、激素调节和神经调节等密切相关。人们常把这种调节控制看成是机体为了维持或跟踪某种状态(目标)的目的性活动。其实,这些调节控制作用是为了保证生物大分子、细胞、组织器官的协调统一,是以生物个体与种族的自我保持与繁衍为目的的,而这种生命结构的自主变换必须以生物各种层次和类型的调节控制为工具。

此外,有关文献中还谈到形态发生的目的性、繁殖的目的性、组织器官的合目的性、功能适应的合目的性等。对此,无须作更多的,总之,它们都可以被看成是以生命过程中结构的自主变换为目的的有机现象。

对于机械还原论与严格决定论来说,因果性与目的性概念是绝对对立的;目的性、整体性、自主性、组织结构、发展演进等概念毫无科学地位与存在权利。然而,在关于结构守恒变换的新型概念框架中,这两类概念就不再是对立的,而成为互斥互补的了;由于概念框架的转换,两种对立的范畴在运用于有机组织起来的生命结构时便成为统一的东西了。在结构变换的概念构架中,目的性与因果性概念不仅是相互补偿的,而且目的性概念相对于因果性概念还是起主导作用的东西。这不仅是指如撇开它单凭因果性概念便不能获得复杂的有机对象的知识,而且是指它在建构这种科学知识中起着决定、规定和支配诸因果性规律的作用。只有在目的性与因果性描述互斥互补的两极张力作用下,只有在结构转换思想与目的性概念的主导下,才能不断推进人类对生命和其他复杂对象的奥秘进行更深入的探索。

正因为这样,结构转换思想与目的性概念对于探究生命问题就不仅具有启发引导功能,而且还具有建构生命科学知识的作用。一方面它为探求生命世界的科学真理提供启迪方法和指导线索,另一方面又是研究有机对象的复杂性、综合统一其经验材料与建构客观知识的必须的概念构架。如在现代生物学中,程序目的性等范畴的导引作用与建构知识的功能就是显而易见的。为了说明这一点,可以考虑作为20世纪生物学革命标志的dna双螺旋模型建立的例子。

当人们在谈到沃森与克里克曾受薛定谔的《生命是什么?》一书启发时,往往强调的是该书中所包含的机械还原论思想的作用。这是不错的,但还不够。因为除此之外,该书中还含有大量的结构转换思想,如书中写道:“微型是丝毫不错地对应于一个高度复杂的特定的发育计划,并且包含了使发生作用的手段。”[9]这里, 问题的关键不在于是否深入到了哪一层次,而在于是否涉及到结构的自主变换,并且书中还使用了“计划”、“手段”等词。这种观念不会不对沃森与克里克产生影响。这种作为“发育计划”的和基因,”……象多布赞斯基(dobzhansky)所说的,不再‘象独奏者,而是象一个乐队’似地起作用。”([4],第34 页)正是这支“乐队”奏出了现代生物学的美妙“乐章”。dna双螺旋结构理论的建立及其对基因学说的发展, 带来了现代生物学知识体系的极大改观,引起了生命科学知识的急剧增长。关于结构的自主变换与守恒的观念起到了构造复杂性科学知识的核心作用。

由于结构转换思想与目的性概念具有构造知识的作用,所以这样建立起来的科学知识就带有一定程度上的决定论特征,具有在探索复杂性的范围内解释已知事实和预测未知事实的能力(预测是对未知事实的解释或说明)。这里涉及到两种解释形式。一是功能性解释。如对机体某组织器官及其功能的说明,并非只是局限于该组织器官本身的行为,而是要根据它们在整个生命机体中的地位、作用,在维持生命中的贡献、功能而对它们加以解释。这种解释便是局部行为如何服务于整体结构的功能性解释,或是关于局部如何为了整体而运行的目的性解释。这里,整体结构的运行是目的,局部行为则是工具。

二是结构性解释。对于生物机体各层次的结构与功能行为的说明,对于生物个体或种群的各种生命现象的解释,既不能只局限于它们本身的特征,也不能只局限于它们在生命整体中所发挥的功能,而是要立足于决定其特征的基本结构的主导作用与形式建构,并根据这种基础性结构模式的运行与守恒变换来对它们加以解释。如对机体的新陈代谢、组织分化、生长发育、遗传变异等,是根据基因的主导、控制、复制、转录、翻译,以及其它层次的结构变换来加以解释的。这种解释既是一种从原因推出结果的因果性解释,又是一种关于“终极原因”的目的性解释。不过这里所谓的原因与目的并不是不可理解的精神性实体,而是结构的守恒变换或自主变换,这里的结果则是生物世界各种合目的性的组织结构与功能行为。于是传统的因果性与目的性解释的区分已失去意义。因为结构的自主守恒变换具有贯彻始终的连续性与不变性,所以我们很难说因果性解释是从现在推出未来,而目的性解释是从未来推出现在。事实上,过去、现在与未来都统一在结构的守恒变换上。

参考文献

〔1〕e.迈尔:《生物学哲学》,辽宁教育出版社,1992年版。

〔2〕n.玻尔:《原子物理学和人类知识》,商务印书馆,1964年版。

〔3〕l.贝塔朗菲:《一般系统论》,社会科学文献出版社, 1987年版,第46页。

〔4〕皮亚杰:《结构主义》,商务印书馆,1986年版。

〔5〕i.普利高津:《从混沌到有序》,上海译文出版社,1987年版,第38页。

〔6〕皮亚杰:《生物学与认识》,三联书店,1989年版。

〔7〕雅克·莫诺:《偶然性与必然性》,上海出版社, 1977年版。

〔8〕n.维纳等:《控制论哲学问题译文集》,商务印书馆,1965年版,第9页。

〔9〕薛定谔:《生命是什么?》,上海出版社,1977年版, 第68页。

进化是进步吗?_其他哲学论文 篇三

摘要:虽然达尔文的《物种起源》已经发表了一百多年,而且自本世纪中叶以来,无论达尔文及达尔文主义的研究,还是进化生物学本身,都取得了飞速的发展。但是目前不少国人在对进化的认识上依然存在着严重的误解,有些误解源自恩格斯关于进化的论述。例如将进化视作进步,以及依然认为生物进化是生物从低等到高等的变化等等。这种看法并非真正的达尔文主义,也与现代的进化观相去甚远。

关键词:进化 进步 达尔文主义

1959年,美国著名遗传学家h.j.穆勒在纪念达尔文《物种起源》发表一百周年的一次会议上,针对百年来人们对于达尔文进化理论的简单、片面的理解,以及进化理论发展的迟缓,发出了这样的感叹:“一百年来没有达尔文也是一样的”。[1]时间又过去了37年,我想, 如果穆勒在天之灵有知达尔文主义和进化理论在当前中国的状况,他还会发出相同的感叹。

姑且不论中国当前对于达尔文主席和进化理论的研究、教学方面的忽视〔1〕, 就是对于达尔文主义和当代生物进化理论的理解和接受方面,我们也远远落后于欧美。再具体一些,对于什么是进化这一进化论中最基本的问题,不少人的认识和理解依然停留在一百年前的水平,其中当然不乏误解。《自然辩证法通讯》1995年第4 期上的“论恩格斯关于物质形态进化的学说”便为我们提供了这样一个例证(以下引注此文时,只注页码)。然而,正如我们下面将要看到的,在中国目前有不少人持有与该文作者相同或相近的观点。因此,我们就进化问题的讨论便具有了普遍性的意义,它不是针对某人,而是针对问题本身的。wWw.meiword.CoM

“论恩格斯关于物质形态进化的学说”一文中提出,“进化与事物的革命性变革、上升发展、相互转化等概念是一回事”。并且认为这“首先是客观的事实”,“所以,从语义学上讲,‘进化’者‘前进变化’之简谓也”。(第23页)

从汉语的语义学角度看,“进化”确实能使人产生“前进变化”的联想。但是这样理解显然是望文生义。因为“进化”(evolution )是一个纯粹的外来语,又有译作“演化”的(笔者认为,根据现代的进化生物学,“演化”是比“进化”更贴切的译法),它的词根“evolv ”的拉丁语含义是“滚动”的意思。据《牛津英语辞典》,“进化”一词于1670年首次使用在生命科学中,但直到19世纪初叶,“进化”这个词基本局限于胚胎发生学中,大致用来表达胚胎发育中潜能的“展露”(unfolding),即表达胚胎的有机发育。〔2〕

这也是为什么拉马克、达尔文这两位科学进化理论的创始人很少使用“进化”一词的原因之一,因为容易与当时人们熟悉的“进化”用法混淆。 在表述生物的进化时, 拉马克更多更明确使用的是“转形”(transformie ), [ 2] 而达尔文则经常使用“带有饰变的由来”(descent with modification)。([3]、[4],p.34)

在达尔文时代,使用“进化”一词最响的并不是达尔文,而是赫伯特·斯宾塞。不过斯宾塞的“进化”用法并不是严格意义上达尔文理论的含义,而是带有前进变化的含义,并且主要通过他,“进化”一词被广泛用于社会科学中。[5]

即使从理论的内涵上看,拉马克和达尔文的进化理论也并不完全含有“革命性变革、上升发展、相互转化”的意思。

首先应该指出的是,“革命性变革”或“革命性变化”在18世纪末19世纪初的生命科学领域中有其特定的含义。灾变论的创始人乔治·居维叶正是使用“革命”(revolution)这个词来说明地层中脊椎动物的不连续性,说明地质史上生物的灾变。([5],pp.106—112)。而拉马克和达尔文理论很少的共同点中就包括他们都明确反对“灾变”(或按当时的用词“革命性变化”)的观点,他们都信奉赫顿的箴言“自然中没有飞跃”,达尔文则更是一位坚定的“均变论”者。[6] 而恩格斯的“自然界完全由飞跃所组成”的观点表明他并没有汲取当时的最新科学成果来看待自然变化的连续性与间断性。〔3〕此外, 拉马克和达尔文从未提出过生物的进化是“相互转化”的观点。试以一个简单的例子,按照拉马克、达尔文的进化理论,哺乳动物起源于爬行动物,如果进化是相互转化的话,也就意味着,哺乳动物中还会发源出爬行动物。自然界中根本就没有这种相互转换的生物进化例证。至于生物进化是否是“上升发展”的观念,在拉马克的理论中确有这样的含义,在达尔文的进化理论中则几乎没有。

现代主流的科学进化理论秉承达尔文主义的传统(即综合进化理论,又被称作新达尔文主义),结合了现代的遗传学、系统分类学、古生物学、胚胎学、生态学、动植物地理学、动物行为学等成果,对于生物的进化有了更新更透彻的理解。无论按照综合进化论的重要代表人物之一迈尔所下的并且被广泛使用的“进化”定义,“进化是适应的改变和生物群体多样性的变化”,还是按照许多遗传学家所坚持的“进化是群体中基因频率的变化”的“进化”定义[7]pp.162—163),“进化”的科学含义中都不存在“革命性变革”、“上升发展”或“相互转化”的意思。亦即,从语义上看,“进化”不等于“前进变化”。

“论恩格斯关于物质形态进化的学说”一文中提出,“在这个〔指达尔文的〕进化学说看来,生物的变化就决不只是种类和数量的简单变化,即是一个由低级到高级,从简单到复杂的前进发展过程。……‘进化’概念的科学含义,就是指事物由低级到高级的不断演变、转化、发展”(第23页)。持有相同进化观的人在中国为数不少。这一点,仅从十几年来的几本高校自然辩证法教材中就可以看出来。1979年教育出版社的《自然辩证法讲义(初稿)》中就指出:“进化论用大量的事实……揭示了生物……从低级到高级发展变化的自然图景”(22页),动植物都经历了“从低等到高等的发展”(71页);1984年吉林出版社出版的舒炜光主编的《自然辩证法原理》中也说:“在生物进化的过程中,是经历了从低级向高级的方向发展”(478页); 而东北大学出版社最新出版的(1995年)陈昌曙主编的《自然辩证法概论新编》中依然认为生物的进化存在着从低级到高级的方向性(80—82页)。此外,在出版社1983年出版的《自然辩证文集》中我们看到,即使象方宗熙这样从事多年生物进化教学和研究的学者也从低级和高级的角度看待生物的进化(258页)。这种观点显然是对达尔文进化学说的曲解。

达尔文的进化理论具有很丰富的内涵。[8] 他将生物的进化看作生物(确切地说是物种)的趋异化过程,在这一过程中,生物发生了从简单到复杂的变化,结果是生物多样性的增加。达尔文认为生物的进化是一两个阶段的过程。第一阶段是随机(不定向)变异的产生,这完全是一个偶然性的过程。第二阶段是自然选择的作用,结果使适应的变异保留了下来,而不适应的变异被淘汰([3],pp.80—81),这个阶段可以视为定向的和必然性的过程,但衡量的标准只是生物的适应。在达尔文看来,适应是生物进化最终结果。在这样一种理论柜架中,偶然性与必然性真正达到了统一。现存生物以及人类的出现是生命演化长河中无数偶然性,以及每一阶段、每一特定时间、特定环境中自然选择作用的结果,并非“物质的本性”决定了必然“发展出能思维的生物”(《自然辩证法通讯》1995年第4期第25页)。同样,对比之下, 恩格斯所谓“太阳系、地球可能要毁灭,但还会重新出现新的集结运动过程,星球、生物、人类还会重新出现”显然缺乏事实和理论依据,只能算是幻想。此外,按照达尔文的进化理论框架,生物“从低级到高级的前进”进化观也显得毫无必要。再者,“低级”,“高级”、“前进”都是人类中心说的判定标准。达尔文理论的一个重要特征就在于其中彻底的唯物论内涵,包括完全抛弃人类中心说的判定生物是否进化的标准。这也正是达尔文理论与前人的进化理论及西方传统观念的一个明显的区别,[9]同时也是他迟迟不发表自己进化观点(推迟了20年)的顾虑所在和他的理论最终引起很大争议的原因所在。([4],pp.21—27)

生物,乃至整个自然界,存在着低级与高级之分,这种观点可以追溯到柏拉图的理念论,并且在亚里士多德那里得到进一步的完善,从而形成“自然等级”(scala naturae)的理论。 亚里士多德认为自然界中的万物根据其质料因和形式因可以划分出不同的等级,并构成静止不动的自然等级。在这个等级中,无机物是低级的,有机物是高级的;而在有机物中,植物是低级的,动物是高级的,人类则是最高级的。这种观念在中世纪后期与经院哲学和世俗的社会理论结合了起来,成为教教会和封建贵族解释社会等级差别的理论依据。到了17—18世纪,亚里士多德的自然等级观念被改造成为“存在的巨大链条(the greatchain of being)[10],并且越来越多的人认为这个链条之间的环节并非固定不变的。到了18世纪后期,存在的巨大链条不是静止不动的,其中存在进步(或前进)变化的观点已广为人知。[10]、[11]

拉马克的进化理论正是按照这样的理论框架形成的。拉马克承认自然界中存在从低级生物到高级生物这样一个等级序列,其中人类是最高级的。但拉马克认为这样一个序列并不是静止不动的,而是存在着进步(或前进)式进化变化,即链条的每个环节都会发生本质性改变,明确地说,物种本身会发生改变,变化的趋势是从简单到复杂,从低级到高级([2],p.60)。这是不同于莱布尼茨等人观点的重要地方, 莱布尼茨等所提出的生物潜能的展露并不涉及生物的本质变化。在谈到生物进化的机制时,拉马克提出,除了环境的作用、获得性遗传、用进废退、自然发生外, 还有生物内在的向着完善的驱动力(intrinsic  drivetoward perfection)([12],pp.222—250)。应该指出的是,19世纪下半叶流行欧美的社会达尔文主义中就包含了许多拉马克理论的成份,如获得性遗传、环境对生物变异的直接作用、用进废退和生物具有向着完善进步进化的内驱力等。([5],pp.266—274)恩格斯关于物质形态进化的观点显然受到社会达尔文主义的很大影响。[13]社会达尔文主义也随着进化论在上个世纪末传播到中国[14],加上带有浓厚拉马克主义色彩的米丘林、李森科等前苏联学者的进化观在中国的广泛宣扬,至今在一些国人的进化认识中,依然存留着拉马克主义的痕迹。

达尔文以其坚定的推论和丰富的依据,为人们展示了一个全新而严谨的理论体系,更加合理地解释了生物的适应、和谐、地质史展示的生物变化与差异,从而带来科学史上的一次革命。[9]

达尔文在其进化理论形成的早期(1837—1838)就认识到不能用从低级和高级的角度来解释生物的进化,“当我们谈到高级时,我们总会说到智力上的高级——但是当我们面对覆盖着美丽的大草原和森林的地球时,很难认为智力是这个世界的唯一目的。”[15]以后他更加明确地告诫自己“绝不使用高级和低级这些词”。([7],p.251)这一思想被现代的绝大多数进化生物学家所继承了。确实诚如现代著名进化论者古尔德所说,“假如阿米巴象我们一样适应生活的环境,谁又能说我们是高级的生物?”([4],p.36)倘若不以人作为参照标准, 低级与高级就更难划分了。比如,软骨鱼出现的历史早于硬骨鱼,按照拉马克主义、社会达尔文主义和所展示的观点,会认为软骨鱼是低级的,硬骨鱼是高级的,但是不论从适应环境的。角度,还是从食物链上位置的角度,都很难认为作为软骨鱼的鲨要比作为硬骨鱼的鳕鱼低级所以认为进化是“一个由低级到高级……的前进发展过程”,既不是达尔文的进化理论,又不是现代的科学成果,只不过是被达尔文理论所替代的拉马克进化论或启蒙运动时期思想家的乐观主义进步论而已。

诚然,达尔文在谈到生物进化的用词上,并没有完全脱离他那个时代。他在《物种起源》中10次使用“进步”(progress),123 次使用了“完美”(perfect, perfected perfection)。[3]但他在使用这些词时,很少带有人类中心说的色彩。他在使用“进步”一词时,并不指生物向着完善的定向发展和前进,而是指时间的进程。([7],p.240)在《物种起源》中,只有一处在谈到“高级”(即地层中晚出现的)化石动物群可能取代其他类群时,达尔文使用了带有发展改善意思的“进步”一词,但他又说:“我找不到检验这种进步的方法”。([3],p.337)在使用“完美”一词时,达尔文主要用来说明在自然选择的作用下生物更加完美地适应所生活的环境,并不是等级上完美的意思。(〔3〕 第六章,〔7〕,pp.240—241)斯宾塞等社会达尔文主义者在使用“进化”、“进步”、“完美”时,与达尔文的用法有很大的区别,其中含有以人类或智力为标准而指称从低级向高级上升前进、不断完善的意思。 [5][16]恩格斯在使用这些词时,其中的含义更近似于斯宾塞的用法。 这类用法的“进化”概念,并不是严格意义的科学进化概念。

19世纪中叶以来,“进化”概念从生命科学中传到天文学、地质学、物理学、化学以及社会科学和人文科学中。在这一传播过程中,“进化”概念发生了很大的改变,已不同于达尔文在说明生物变化时的原义了。今天,“进化”一词被广泛用来说明人类历史的变化、的变化、经济的变化等,但其中的含义基本上是事物随时间的改变,而且是单向性的,甚至有些进化是可以预先确定方向的。而生物的进化除了时间上的变化外,它还不是单向性的,而是分叉状的,另外生物进化的方向并不是预先可以确定的。([17],p.5)换句话说,到目前为止, 科学界关于物质形态的进化还未形成统一的理论。其实,即使在生物学界,在生命进化本身的看法上也没有达成共识。如此看来,上面所引述的且被目前许多人所认同的恩格斯的关于物质形态进化的统一学说就显得过于乐观和缺乏依据了。

、恩格斯的学说无疑是奉献给人类的无价财富,继承这笔财富的最好方法是利用时代发展所取得的精神、文化成果(包括科学的最新成果)去丰富它,而不是恪守其中已经过时的教条。

参考文献

[1] h.j.muller, "one hundred years without darwin areenough". the humanist, 19:139—149, 1959.

[2] j.b.lamarck, zoological philosophy (1809). translatedby h.elliot, london, 1914; reprinted by univ.  of chicago,1984.

[3] c.darwin, on the origin of species ( 1859) , facsimileof first edition, ed. e.mayr, harvard univ. press, 1964.

[4] s.j.gould, ever since darwin, w.w.norton, 1977.

[5] p.j.bowler, evolution-the history of an idea,  univ. of california press, 1984.

[6] e.mayr, the growth of biological thought.  harvarduniv. press, 1982.

[7] e.mayr, toward a new philosophy of biology,  harvarduniv. press, 1988.

[8] d.kohn ed., the darwinian heritage, princeton univ. press, 1985.

[9] m.ruse, the darwinian revolution, univ.  of chicagopress, 1979.

[10] a.o.lovejoy,  the great chain of being,  1936. reprinted: harper, 1960.

[11] s.f.梅森:《自然科学史》,第28章,周熙良等译, 上海译文出版社,1984。

[12] e.mayr, evolution and the diversity of life, harvarduniv. press, 1976.

[13] r.m.young, "darwini is social", in [8], pp. 609—638, 1985.

[14]李佩珊:“社会达尔文主义和达尔文进化论在中国”,《自然辩证法通讯》1991,3:29—32。

[15] s.herbert ed., the red notebook of charles parwin, b252.cornell univ. press, 1979.

[16] m.ruse,laking darwin serously, basil blackwell, 1986.

[17] m.ridley, evolution, blackwell, 1993.

数学中的游戏因素及其对于数学的影响_其他哲学论文 篇四

游戏与数学作为两项人类活动具有许多共同的特点,这种共性主要体现在它们的性质、结构以及实践等三个方面。数学与游戏之间的关系是相互渗透、相互统一的关系。游戏的精神一直伴随着数学的成长和发展,成为数学发展的主要动力之一;并从以下几个方面影响了数学的发展;游戏激发了许多重要数学思想的产生,游戏促进了数学知识的传播,游戏是数学人才发现的有效途径。此外,游戏还在数学教育中起着非常重要的作用。

【关键词】数学/游戏/数学发展/数学教育

【正文】

一、数学与游戏的关系

一般认为,游戏是一个广泛的概念,它包括任何一种旨在消遣时光或寻求娱乐的活动。而数学则是带有艺术风度的智力工作,同时是具有巨大的实用价值的科学。数学总是和逻辑在一起,数学家在从事研究时一般不是戏谑的,因为严谨和认真是人们对数学的一种追求,游戏对于数学的作用至多起激发兴趣和调节情绪的作用。然而,事实上情况并非那么简单。考察一下数学与游戏的关系,我们发现游戏与数学的关系非常密切。无论从数学知识的本身,还是数学活动的过程,如从事数学活动的人们的动机、方法等方面都可发现游戏的因素。

首先,就数学知识本身来说,在传统数学领域和现代数学领域中都可发现大量赏心悦目的具有游戏性质的内容和问题。在算术中,毕达哥拉斯学派对于完全数和亲和数等数字的奇特性的研究,以及用石块的游戏列出的有趣定理都具有游戏的性质。在代数中,三次方程早已出现在公元前1900-1600年巴比伦的泥板书中,当时并没有实际的问题导致三次方程,显然巴比伦人把这个问题当作消遣。WWw.meiword.CoM公元前3世纪阿基米德提出“群牛问题”导致包含8个未知数的代数不定方程组。5-6世纪《张丘建算经》中记载的“百鸡问题”导致3元不定方程组。几何学中的游戏趣题更是花样繁多,如由勾股定理所编制的大量趣题、古希腊人研究的角的三等分、倍立方体和化圆为方三大几何作图问题以及对割圆曲线等奇异曲线的研究、用相同形状的图形铺满整个平面的问题,等等。许多深奥的、严肃的数学也带有游戏的情趣。例如,从16世纪以来,在微积分中人们对大量种类的奇形怪状的曲线的研究显然带有娱乐的性质。最早纯粹关于消遣性数学问题的书籍出现于17世纪,其后200年中,数学中的游戏及迷题的种类和数量大增。在此时期人们的兴趣大都集中在数字的奇特性、单纯的几何迷题、算术故事问题、魔(术)方(块)、赌博等游戏。到了19世纪,人们的兴趣开始转向一些现代数学领域,如拓扑学、组合几何、图论、逻辑学、概率论等,其中研究对象性质的奇特性、推理方法的迷惑性、以及各种组合问题和几何图形操作的灵活多变性等都是给人以乐趣的、带有游戏色彩的问题。

其次,数学作为一项人类活动,自古以来一直是一个享有特权的人类智力活动领域,被看成是人类智力的象征。它能使参与者产生情感方面的体验,给人乐趣。因此,许多人不单是因为数学有用而研究数学,他们的出发点则是把数学作为一种自娱自乐的游戏,一种高级的心理追求和精神享受。许多数学思想是人们锲而不舍地思索一个令人迷惑的概念或问题的结果。有些人可以就一些问题和趣题连续工作几个小时,甚至花费几天、几年的时间去探讨那起初从表面上看来不过是消遣的东西,直至细枝末节,以求得彻底解决。例如,几何学起源于实际的需要,然而几何学的繁荣发展却开始于古希腊。尽管希腊人把几何看作与对于世界本质的思索一样严肃的事,但实际上希腊人却把几何当作智力游戏对待,他们的大部分工作本质上都具有游戏的性质□□远离功利,满足好奇心和求知欲,有闲人的消遣,比如他们把大部分的精力都集中在许多单纯的几何迷题上。可以说数学只是希腊人的一个高级玩具,而并非一个有用的工具。

数学即游戏的观念在19世纪数学变为一种职业以后仍然在发挥作用,实际上这种观念一直持续到现代。在此,引用爱因斯坦于1918年4月所讲的一段意味深长的话:“许多人爱好科学,是因为科学给了他们异呼寻常的智力上的,对于这些人科学是一种特殊的娱乐;还有许多人之所以把他们的智力奉献给科学祭坛,为的是纯粹的功利。如果把这两类人都赶出神圣的殿堂,那么,这里的人就会大为减少…”爱因斯坦的这段描述在科学殿堂活跃的人们的话同样也适用于数学。著名数学家哈代曾说:激励数学家做研究的主要动力是智力上的好奇心,是谜团吸引力,正如希尔伯特所说:“问题就在那里,你必须解决它”。正是这种永不满足的吸引了大批的人献身于数学,从而导致了大量问题离奇地绽开数学的嫩牙。可以说数学在其成长和发展中一直伴随着游戏的精神。

这种数学即游戏观念并非出于偶然,从本质上作一番考察,我们会发现数学与游戏具有许多共同的特点,它们的关系是相互渗透、相互统一的关系,这种统一主要体现在活动的性质、结构的形式以及实践三个方面。

首先,数学与游戏作为两项人类活动具有许多共同的性质特征。有些社会学家曾经对游戏进行了深入的,以下性质是游戏的基本特征:

1.游戏是一种“自由活动”,“自由”在希腊语中的意思是“无报酬的”,即活动本身是为了锻练,而不是为了从中获取利益。

2.游戏在人类的发展中起着“一定的作用”。幼儿从游戏中丰富情感、获得知识、发展智力和能力,从而为将来的竞争和生活作准备。成年人玩游戏则是为了体验解放、回避和放松、满足好奇心等感觉。

3.游戏不是玩笑,作游戏必须相当认真。不认真对待的人是在糟蹋游戏。

4.游戏就象艺术工作一样,在深思熟虑、实施以及取得成功的过程中能够得到巨大的乐趣。

5.通过游戏规则可以创造一种新秩序和充满和谐韵律的世界。

6.游戏有自己的时间和空间。……

显然,数学作为一项人类的活动也具有以上所有的特点,从这一点来讲,数学的确是一种游戏。

其次,数学与游戏的系统结构也有共同的形式。数学具有演绎体系或称为公理化系统,这种系统由不加定义的概念(原始概念),不加证明的命题(公理)组成。其中原始概念的含义由公理体现出来。任何游戏在一开始都是介绍一些对象或部件,一系列的规则,这些对象或部件的作用由那些规则所决定。两者的相似是显然的,它们的差异只是叫法不同而已,数学中的不加定义的概念对应着游戏中的对象或部件,公理对应着游戏的规律,数学中的定理则对应着游戏过程中的每一状态。两个系统中都有“定义”,也都有“证明”。例如,以下“字母游戏”的系统可以用数学的语言描述[4]:

不加定义的概念:字母m,i和u。

定义:x指任何由若干i和若干个u组成的字母串。

公理:1)如果字母串的最后一个字母是i,则可在最后加上字母u。

2)如果已有mx,则可以加上x变为mxx,此称为加倍法则。

3)如果在字母串中出现三个i相连的情况,即iii可用一个u来代替。

4)如果uu出现,则一局结束。

定理:“由mi,必然导出muiu”

证明:mi□(公理2)mii□(公理2)miii□(公理1)miiiu□(公理3)muiu

正是由于数学与游戏的形式结构的相似,20世纪初数学哲学中学派的代表人物希尔伯特(d.hilbert)有一个极端的观点:“数学是根据某些简单规则使用毫无意义的符号在纸上进行的游戏。”

第三,数学与游戏的实践也有共同的特征。任何人在开始做游戏时,都必须对它的规则有一定的了解,将各部件的相互联系弄清楚,就象数学的初学者那样,用同样的方法比较并建立该理论中的基本元素之间的相互作用,这些就是游戏和数学理论的基本练习。无论在数学中还是在游戏中,较深层次的、更复杂的步骤和策略的运用都需要特殊的洞察力。

在玩高级游戏的过程中,总是有问题出现,人们总想要在从未探索过的游戏情境中用首创的方法来解决,这对应于数学理论中未解决的问题的研究。在创造新游戏的过程中,需要设计情境,给出新颖的策略和创造性的游戏方式。将其与创立新的数学理论相类比的话,就相当于提出新颖的思想和方法,并将之应用于其它未解决的问题,从而更深刻地揭示现实生活中某些至今尚不明了的真理。

因此,从广义上来讲,可以说数学是一种游戏,只不过这种游戏要涉及到科学、哲学、艺术等更广泛的人类文化范围。从狭义上说,数学中的游戏是指那些具有娱乐和消遣性质的并带有数学因素的游戏和智力难题。正是由于数学与游戏之间的共性,许多问题和内容很难说是应归于纯数学研究还是归于有趣的智力游戏;更难于区分人们对于数学的兴趣是由于数学中的游戏因素,还是由于数学的其他因素。总之,数学中有游戏的精神,游戏中有数学的思想,要想在两者之间画出一道严格分明的界限是不可能的。

二、游戏对数学发展的影响

既然数学与游戏是如此紧密的联系在一起,因此在某种程度上可以说,游戏精神是数学发展的主要动力之一。人们从事数学活动,就是在进行某种趣味四溢的游戏,数学中的游戏因素给数学带来了无穷的魅力,从而吸引了一代又一代人的目光,大大加速了数学的发展。因而,不论是数学家还是一般的游戏者都促进了数学事业的发展。此外,游戏对数学的发展还表现在另外三个方面:游戏激发了许多重要数学思想的产生,游戏促进了数学知识的传播,游戏是数学人才发现的有效途径。

1.游戏激发了许多重要数学思想的产生。数学史上经常出现这种情况,许多数学思想起源于对于一些令人迷惑不解的问题的锲而不舍地探索,这些问题往往从表面上看来不过是供人消遣的游戏而已,甚至看来与数学的情境毫无关系,然而最后问题的解决却产生令人意想不到的新的数学思想。例如,自古以来,悖论出现在广泛的学科范围,包括文学、科学、数学。不管什么类型的悖论,其中的创造性和令人困惑的推理都充满了趣味和给人异乎寻常的智力上的。特别地,数学的悖论不仅可以供人娱乐,而且还是很好的智力练习和发现的乐士,许多数学学科的完善都与悖论有关,如实数理论、微积分、集合论等。可以说数学中几乎每一门学科都或多或少受到游戏精神的激发而得到发展。最典型的例子是概率论、图论和组合数学建立。

概率论直接起源于一个关于赌博的游戏。17世纪,法国的一个名为德·梅勒的职业赌徒针对赌博中常常遇到“怎样合理分配赌注”问题,向著名数学家帕斯卡请教,这个问题常常称为“点子问题”,即两个赌徒中谁先积满一定数目的点谁就赢得一局;如果在一局结束以前离开赌场,他们应该如何分配赌注?帕斯卡和费马在通信中各自解决了这个问题。对于这个问题的解决和研究标志着不同于以往确定性数学的一种崭新的数学方法——概率论的诞生,它把纯粹偶然事件的表面上的无规律性置于规律、秩序和规则之下,从而成为人类的根本知识之一,并具有广泛应用价值。正如拉普拉斯所说:“这门起源于靠运气取胜的游戏的科学,竟然成了人类知识的最重要的一部分”。

图论也是一门起源于游戏的学科,它起源于欧拉关于哥尼斯堡七桥问题的研究。哥尼斯堡是东普鲁士首府,普莱格尔河横贯其中,上有七座桥将河中的两个岛和河岸连接,一个散步者怎样才能走遍七座桥而每座桥只经过一次?当时大多数人都把这当作有趣的娱乐,但是欧拉发现这个问题可以异向一个另外的契机,他抓住了这个契机并加以发展。1735年,欧拉向圣彼得堡科学院提交了一篇论文,欧拉把这个问题的物理背景变换并简化为一种数学设计(称作图或网络):即把每一块陆地用一个点来代替,将每一座桥用连接相应的两个点的一条线来代替,从而相当于得到一个图。欧拉证明了这个问题没有解。欧拉指出欧几里得几何并不适用于这个问题,因为桥不涉及“大小”,也不能用“量化计算”来解决。相反地,这问题属于“位置几何”(莱布尼茨描述拓扑学时首先使用的名称)。所以,哥尼斯堡七桥问题的解决远远超出了它的娱乐价值,由此提出的新思想则开辟了数学的一个新的领域一图论。当然游戏娱乐对于图论的作用并没有到此为止,此后许多著名的数学游戏成为图论和拓扑学发展的催化剂和导引,如哈密尔顿问题(绕行世界问题)、四色猜想等。

另一个与游戏密切相关的学科是组合数学。组合数学是研究任意一组离散性事物按照一定规则安排或配置方法的数学。二十世纪以前,人们主要从游戏的角度来研究组合数学,例如中国的魔方、纵横图、巴歇砝码问题、柯可曼女生问题、欧拉36名军官问题等等。这些问题推动人们去思考,它们的解答也常常是机智和精巧的。在这个过程中,人们得到了组合数学中一般的存在性定理和计数原理,如抽屉原理、母函数方法、递归关系解法、容斥原理等。……

事实上,数学学科中一些最伟大的成就,象射影几何、数论、拓扑学、对策论等无不受到游戏精神的影响。总之,由游戏的精神激发出来的数学对象是无止境的。当人们以自愿而嬉笑的心境,而不是以正式的科学常有的严肃认真的背景来看待一门学科时,这种精神就能使科学有效地取得进展。这是因为在解决和创造智力题或游戏的过程中,人们可以不受传统理论概念或方的束缚,完全自由地显示他的想象力和发挥他的创造力。正因为如此,游戏成为严肃数学的出发点,有时成为某些学科产生和发展的催化剂。

2.游戏对于数学的另一作用是促进了数学知识的传播。游戏之所以具有难以抗拒的魅力的一个很重要的原因是游戏所涉及的问题和内容有趣迷人、浅显易懂。另外又不需要过多的预备知识,只要掌握一般的基本知识,初学者即可登堂入室,理解某一门学科的许多的重要内容。正像读过几部侦探小说的人会情不自禁地觉是自己已有了足够的本领,可以帮助警方破案一样。因此数学游戏常被用来作为严肃数学的一种表现方式,使之更易理解和更具趣味。游戏在数学普及和传播中的有效性一直伴随数学的成长和发展过程中。在人们津津乐道、相互传诵游戏的过程中,也将有关的数学知识和数学思想传送给四面八方的人。下面是历史上这一倾向的几个典型例子。

成书于公元前1700年的古埃及的阿默士纸草书(也称rhind纸草书)是为了当时的贵族和祭祀阶层所作的数学普及性的一个问题集(有人说是教科书),其中有些问题是以有趣的歌谣或故事的形式编写而成。因此流传很广,如第79题关于几何级数的加法问题又演变成“我去圣地爱弗斯”等歌谣流传于欧洲几个国家。

欧几里得也在已经失传的一本名为《纠错集》(pseudaria)的书中使用了一组有趣的谬论,作为激励他的学生进入正确思维过程的手段。阿基米德在他的《数沙粒者》一书开始就说:“过去有个叫吉伦(gelon)的国王,他认为沙粒的数量是无限的……”,这种以游戏的方式来处理数学的情境的目的就是使他的思想更为人们所理解和接受。

中世纪意大利数学家斐波那契(j.fibonacci)的《算盘书》是一本广泛流传于欧洲各国的著作,这本书流传的原因除了它的内容实用之外,还因为把数学内容寓于生动有趣的游戏之中,如“兔子繁殖问题”、“蓄水池问题”、“野兔和猎狗”、“七个老妇”等几乎成为家喻户晓、人人皆知的数学游戏。此书唤起了欧洲人对于数学的兴趣和重视,为以后欧洲数学的复兴奠定了基础。

在世界各地都曾经流传一些著名的数学游戏,如古代中国的韩信点兵、百鸡问题、七巧板、大衍求一术(该问题被多种数学著作改头换面地采用)。古印度的莲花问题、蜜蜂问题……

从19世纪末期开始,由于人们意识到游戏在数学知识的普及与传播中的独特的作用,关于数学游戏的收集、编造以及解答等方面的研究受到空前地重视,在众多的研究者中,影响最大的是美国科普作家马丁·加德纳(m.gardner)的工作,他曾在美国的著名科普杂志《科学美国人》(scientific americian)上主持“数学游戏”专栏。他工作的特点是把许多数学思想或知识寓于各种奇妙有趣的故事和问题之中。这些题目初看似乎很难,有时冥思苦索,百思不得其解,但如果放开思路,打破框框,从各种角度去考虑,也许很快就会有所突破,具有“啊呵!灵机一动”的特点。这些妙趣横生的作品使数以百万计的人陶醉于数学乐园之中。以后这些趣题被汇集成册以各种文字出版多次,其影响广泛而又持久。最近,英国数学家康韦(j.h.conway)等人在所作的《数学游戏获胜的方法》一书中说:“马丁,加德纳比任何人将更多的数学带给了千百万人。”这句话在肯定了马丁·加德纳的贡献的同时,也道破了游戏对于数学传播的有效性。

3.游戏也常常成为数学人才发现的有效途径,从而成为他们进入数学研究的踏脚石。历史上许多数学家是由于解决了某个游戏难题而发现自己具有数学潜能,从此放弃其他选择而献身数学。高斯在数学史上是与阿基米德、牛顿等人并列的数学家,有“数学王子”之称,他填补了古典数学家遗留的许多空白,而又为现代数学开辟了许多意义深远的新道路。高斯成为数学告别过去走向现代的一个象征。这样一位大数学家以数学为职业却是由于在他19岁那年解决了一个长期困扰数学界的、带有游戏色彩的几何作图难题——用尺规作出了一个正十七边形,这一成功使他对自己的数学才能有更加明确的认识,于是,他毅然放弃自己所喜爱的语言学而投身于数学。

著名的法国概率学家西米尔·伯松(s.d.poisson)年青时曾经为找到一个适合自己的职业而大伤脑筋,他的父亲要他学医或法律,但他缺少这方面的欲望。正在苦苦寻觅之时,一道趣题使他意识到自己的习性和兴趣倾向于数学方面。以此为开端,他开始了数学研究生涯。一道游戏趣题而成为他一生的转折点[7]。

一般来说,许多具有数学潜能的人往往从小表现出对游戏的迷恋和酷爱,以及在解决方法上的灵活和机智。所以游戏往往成为检测一个人的数学和推理能力的一个标准。如果说上述例子还不足以说明这一点的话,还可以举出许多涉足过游戏的数学家名字:对赌博痴迷终生的意大利数学家卡尔达诺;由魔术师成为20世纪有影响力的美国数理统计学家戴77774康尼斯(persi diaconis);从小就以玩游戏出名的英国数学家康韦(j.h.conway)、此外还有莱布尼茨、伯努利、哈密尔顿、冯诺伊曼……游戏成为自我检测数学才能的试金石。现在各种数学竞赛中包含许多数学游戏,这种做法实际上也是基于“游戏可用于选拔数学人才”的理念。

三、游戏在数学教育中的作用

古往今来的数学教育的理论和实践都已证明游戏对于数学教育具有极大的价值。对此,马丁·加德纳曾经作了相当正确的评价“唤醒学生的最好的办法是向他们提供有吸引力的数学游戏、智力题、魔术、笑话、悖论、打油诗或那些呆板的教师认为无意义而避开的其他东西。”具体说来,游戏在数学教育中的有效性主要表现在以下三个方面:

首先,游戏是数学内容获得的有效方法之一。因为游戏为不同年龄层次的人提供了这样的机会——通过具体的经验去为今后所必须学习的内容作准备。例如折纸的游戏,折纸的对象是一个正方形的纸张,留在正方形的纸张上的折痕揭示出大量几何的对象和性质;相似、轴对称、心对称、全等、相似形、比例、以及类似于几何分形结构的迭代。折纸的过程也极具启发性:开始用一个正方形(二维物体)的纸张来折一个立体(三维物体),如果折出了新的东西,那么折纸的人就把这个立体摊开并研究留在正方形纸上的折痕。这个过程包含了维数的变动。一个二维物体到三维物体,又回到二维,这就跟投影几何的领域发生了关系[3]。

其次,游戏与数学结构的相似性保证了游戏有利于数学思维的培养,从而使学生更深刻地理解数学的精神。例如,计算机游戏可以发展几何的空间感觉和意识;某些棋类或字母游戏提供了公理系统的体验,从而使游戏成为学生从具体过度到抽象数学证明的桥梁。通过游戏也会使学生体会到数学的另一种精神:数学不是一门一成不变的课程,数学知识也不是绝对的真理,“数学是人类心灵的自由创造。”或者说数学思想是人的想象力的虚构物和创造物。数学世界于我们的现实世界,尽管它和现实世界以不可思议的对应联系起来,并成为人类认识自然界和认识人类社会自身的有效工具。这正是数学的奇妙所在。

最后,游戏可以培养正确的数学态度。这一点主要体现在两个方面。一方面,游戏是培养好奇心的有效方法之一,这是由游戏的性质决定的——趣味性强、令人兴奋、具有挑战性等。好奇心又为探索数学现象的奥秘提供了强大的动力。如果学生没有对于这门学科的强烈兴趣和探索未知问题的好奇心,那么数学学习将是一项艰苦而缓慢的工作。许多数学家开始对某一问题作研究时,总带着与小孩子玩新玩具一样的兴致,先是带有好奇的惊讶,在神秘被揭开后又有发现的喜悦。

另一方面,游戏还可以培养学生养成乐趣吸取不同的思路、勇于创造的研究态度。许多研究人员都为游戏和不同思路之间的关系之密切提供了大量的事例[3]。例如,一个小女孩玩积木时,可能会尝试着用不同的组合方法来观察把一块积木放在另一块上面时,摆多少块可以不到下来。她边玩边对自己的设想进行判断,充分发挥了她的主动性和创造性。并且,她还可以用从游戏中所获得的思路和方法去解决其他的问题。在游戏时所用的不同思路就是在为某种任务或问题寻找解决方案,因此,可以说游戏是研究的最高形式。爱因斯坦在1954年说过的一句话就指出了这一点[3]:“要获得最终的或逻辑的概念的愿望,也就是玩一场结果不明的游戏的感情基础。……这种组合游戏看来就是创造性思维的重要表现形式。”

对于数学教育来说,游戏的方法并不能代替一切,但如果在正规严肃的教学方法之外多为学生提供机会参加一些游戏,或至少提供一本好的数学游戏选集,即在教学中掺入游戏的精神,那么精神教育将会起到事半功倍的效果。游戏可以使任何水平的学生都从自己的最佳观测点面对每一个题材。学生除了学到数学的内容,体验数学的思维方式,还可以培养正确的学习态度:不同的思路、创造、动力、兴趣、热情、喜悦……。总之,游戏对数学的教育价值和重要意义是不容忽视的。

四、结语

综上所述我们看到,游戏对于数学的发展产生了重要影响,并在数学教育中起着重要的作用。所以,从理论上探讨数学与游戏的关系对数学的进一步发展乃至当今数学教育研究都具有深刻的启迪作用和借鉴价值。当然应当指出,游戏本身并不是数学的终点,它不能完全取代对所有数学活动的,数学是一种多边的人类活动,数学中的游戏娱乐、美学欣赏、哲学思考、实用价值探索等因素是如此紧密地交织在一起,只要拆散和剔除任何一个可能不合我们个人爱好的方面,都将给数学带来不可估量的损失。只有认真研究和总结数学发展中的各种因素,才能客观地、全面地认识和评价数学,从而促进数学事业的研究和发展。

本文中所论述的是数学与游戏的关系中的一个方面,即数学中的游戏因素及其对数学发展的影响。还有许多方面有待于去探索和总结,例如数学对于游戏的影响、计算机进入游戏王国及其对于数学的影响,怎样把游戏的方法引入数学教育中,……等等,都是有待于进一步探讨的问题。

【参考文献】

[1] miguel de guzman“数学与游戏”,《数学教育评价研究》,上海教育出版社,1996。

[2] 张之沧:“科学与游戏—维特根斯坦‘语言游戏说’的启发”,自然辩证法研究,1998.15(8)。

[3] don gernes,"the rules of the game",the matherematics te-achers,vol.92.5.

[4] rudiger thiele,"mathematical games",companion encyclope-dia of the history and philosophy of the mathematical sciences,vol.2,1555-1567.

[5] david singmaster,"recreational mathematics",companion e-ncyclopedia of the history and philosophy of the mathematical sciences,vol.2,1568-1575.

[6] 〔法〕让.迪厄多内著,沈永欢译:《当代数学,为了人类心智的荣耀》,上海教育出版社,1999。

[7] t.pappas著,陈以鸿译:《数学的奇妙》,上海科技教育出版社,1999。

[8] t.pappas著,张远南等译:《数学趣闻集锦》,上海教育出版社,1998。

[9] 马丁·加德纳著,林自新译:《引人入胜的数学趣题》,上海科技教育出版社,1999。

[10] 郭凯声编著:《数学游戏》,科学技术文献出版社,1999。

[11] donald j.albers and g.l.alexanderson,"mathematical peo-ple",boston basel stuttgart,1985.

[12] 〔美〕m.l.汉宁格:“寓数学和科学教育于游戏之中”,外国教育,1988.2。

论复杂性与随机性的关系_其他哲学论文 篇五

【内容提要】本文通过对历史上复杂性与随机性关系的认识回顾,展示和了起源于计算机科学领域的kolmogorov复杂性与随机性的直接关联,了盖尔曼的有效复杂性概念,论证了两种复杂性与随机性的关系,以及随机性的不同情况,力图剥离混合在复杂性与随机性相互关系上的一些误读和误解,还复杂性与随机性一种客观的本真关系。

【关键词】复杂性/计算复杂性/算法复杂性/随机性/有效复杂性ⅰ/有效复杂性ⅱ

【正文】

最近,我们在研究复杂性问题的过程中,发现复杂性与随机性的关系具有特别的意义,许多国内外的学者在复杂性与随机性的关系认识上,常常以随机性代替复杂性,认为随机性就是复杂性的内容之一。本文力图剥离混合在复杂性与随机性相互关系上的一些误读和误解,还复杂性与随机性一种客观的本真关系。

一、历史上复杂性与随机性的认识回顾

科学上经典的复杂性的概念,最早起源于计算机科学研究领域,当然它主要参考了物理学当时的基本观念。

(一)建基随机性上的两种复杂性概念

为了探索复杂性与随机性的关系,我们先了解计算复杂性、算法复杂性的概念。

首先让我们从信息理论的角度来看待问题。信息的简单还是复杂涉及的是表达信息的序列串如何。简单的非复杂系统的产生指令很简短,通常也很明显:例如,所有项相加即为和。这样复杂性可以操作性地定义为:寻找最小的程序或指令集来描述给定“结构”——一个数字序列。这个微型程序的大小相关于序列的大小就是其复杂性的测量。

序列111111…是均匀的(不复杂的)。WWW.meiword.COM对应的程序如下;在每一个1后续写1。这个短程序使得这个序列得以延续,不管要多长都可以办到。

序列110110110110…的复杂性高一些,但仍然很容易写出程序:在两个1后续写0并重复。甚至序列110110100110110100…也可以用很短的程序来描述;在两个1后续写0并重复;每三次重复将第二个1代之以0。这样的序列具有可定义的结构,有对应的程序来传达信息。比较这三个一个比一个复杂些的序列。再看下面的序列11010010110111010010…,它不再是一个可识别的结构,若想编程必须将它全部列出。但是如果它是完全随机性的,那么,我们根据概率规则,可以知道最终在这个数串中0和1的出现几乎是等概率的。

于是为了解决这些关于如何认识复杂性增长和判别复杂性程序的问题,科学家们定义了多种描述性的复杂性概念。

计算复杂性(computational complexity)源于20世纪30年代数学逻辑发展过程中提出的一些深刻命题。它们都有自己特定的问题规模n,计算复杂性就是指解决问题随问题规模n增长而需要的代价增长。这种简单性和复杂性的分野是,如果计算时间(或空间)的增长不超过n的某个幂次或多项式,那么该问题是简单的,称为p类问题。如果增长速率超过n的任何多项式,则问题是困难的,称为np类(np即“非确定多项式”non-deterministic polynomial的缩写)问题,即复杂性问题之一。如推销商的路线选择问题(travelling selean problem,简称tsp)就属于问题中的“完全np”一类问题。此类问题的特点是,随着问题涉及面增加,其计算量将指数性或失控式地增长。

对计算复杂性的常见度量是时间和空间。一般地说,所谓时间就是一个计算中离散步骤的数目;空间就是指计算指令读取独特的存储地址的数目。[1]如前所述,时间上的计算复杂性即一个计算机描述一个系统(或解一个问题)所需要的时间;空间上的计算复杂性即描述一个系统所需要的计算机存储量。

算法复杂性(algorithmic complexity),主要是由a.n.kolmogorov,[2]g.j.chaitin[3]和r.j.solomonoff[4]在20世纪60年代中期分别提出的概念,又称为kolmogorov复杂性。基本思想和定义如下:

对每一个d域中的对象x,我们称最小程序p的长度丨p丨就是运用指定方法s产生的关于对象x的复杂性。对计算机s而言,设给定的符号串为x,将产生x的程序记为p。对一个计算机来说,x是输入,p是输出。粗略的说,关于一个符号串x的kolmogorov复杂性,就是产生x的最短程序p的长度。上述定义可写为:[5]

k[,s](x)=min{丨p丨:s(p)=n(x)}

k[,s](x)=∞ 如果不存在p.

其中k[,s](x)即kolmogorov复杂性。后一个公式的含义是明显的,即如果传送的符号串完全杂乱无章,找不到任何规律(即程序p),那么,复杂性就等于符号串本身,而符合串是无规无穷数,复杂性即无穷。因此在算法复杂性中,实际上是越随机性(random)的东西,越不可认识,其结果是它越复杂。换句话说,复杂的随机性对象有最大的复杂性,因为不可能压缩对其对象的描述。[6]

(二)kolmogorov复杂性的影响和有效复杂性的提出

kolmogorov复杂性定义实际上支配了后来计算机科学上对复杂性的几乎所有的研究,以后又波及到几乎所有科学领域。例如,f.cramer就是按照这种思路把复杂性程度分为三个等级:亚复杂性、临界复杂性和根本复杂性。所谓亚临界复杂性是指系统表面复杂但其实很简单,或许是算术性的。简单的物理定律,如牛顿定律可以用于得到的决定性系统;所谓临界复杂性是指在复杂性的特定阶段——在它的临界值上——开始出现某些结构。最简单的情况是对流和对流图案形式。这个复杂度称为临界复杂性。这些系统构成一些亚系统,例如进化系统或不可逆热力学系统;所谓根本复杂性是指“只要系统有着不确定性解或混沌解它就是根本复杂的”,[7]“一旦程序的大小变得与试图描述的系统可以相提并论,不能再对系统进行编程。当结构不可辨识时——即当描述它的最小算法具有的信息比特数可与系统本身进行比较时——我称之为根本复杂性。根本复杂性的这个定义是以a.n.kolomogorov(1965)的方程为基础的。”([7],p.211)

按照f.cramer的认识,根本复杂性相当于无法认识。根本复杂性即那些表现得完全随机性(random或stochastic)、描述结果与被描述对象可以相提并论,完全无法获得规律性认识,简单地说,无法辨识即根本复杂性。

所以,根本复杂性=完全随机性。

f.cramer还按照复杂性程序的不同,比较了数学、一般科学理论、物理学、生物学、进化过程、科学之外系统(包括科学作为一个整体系统、哲学、美学、语言、宗教和历史)等6类知识体系的描述复杂性情况,按照他的分类,我们看到几乎每一个认识体系都有自己的三类复杂性(第一类实际上是简单性)情况。

当然,这种通过图灵机方式,用算法耗用资源的方法表示计算复杂性程序,给研究的难度做了一个很好的客观的划界。但是,如果一个对象根本无法简约对对象的描述,其描述长度与构成对象的组分“程序”完全一样,甚至完全不存在一个最短描述程序p,算法复杂性给出的复杂性定义与我们在物理学等科学上对随机性的复杂性认识就有所背离。

例如,完全随机性的全同粒子组成的气体系统,它的内部状态是无法给出程序描述的随机状态,但是它的结果却是非常简单的、确定的,不具有复杂性特征。

因此,反对复杂性等于随机性的观点也是应该考虑的。其典型的代表是盖尔曼,他提出“有效复杂性”概念。所谓“有效复杂性,大致可以用对该系统或数串的规律性的简要描述长度来表示”。([8],p.49)他认为算法复杂性不能用来定义复杂性,其原因在于算法复杂性具有不可计算性和随机性。他的根本观点是随机性不是复杂性,即有效复杂性这一概念的作用,尤其当它不是内部有效复杂性时,与进行观察的复杂适应系统能否很好地识辨与压缩规律并抛弃偶然性的东西有关。

盖尔曼认为,假定所描述的系统根本没有规律性,一个正常运作的复杂适应系统也就不能发现什么图式,因为图式是对规律性的概述,而这里没有任何规律可言。换句话说,它的图式的长度是零,复杂适应系统将认为它所研究的系统是一堆乱七八糟的废物,其有效复杂性为零。这是完全正确的;胡言乱语的语法图式其长度应该是零。虽然在具有给定长度的比特串中,随机比特串的aici[算法信息量]最大,但是其有效复杂性却为零。([8],p.58)

aic标度的另一个极端情形是,当它几乎等于零时,比特串完全规则,比如全由1组成。有效复杂性一用于描述这样一个比特串的规律性的图式的长度——应该非常接近于零,因为“全部为1”的消息是如此之短。

因此,盖尔曼提出,要想具有很大的有效复杂性,aic既不能太高,也不能太低。换句话说,系统既不能太有序,也不能太无序。有效复杂性是非随机性的,但是有效复杂性又不等于有序中的简单性,即完全规则的那种情况。这里的有效复杂性应该指可理解性意义上的描述长度较长的类。因为可理解性意义的描述长度很短,就相当于简单性了。而完全不可理解,意味着完全随机性。描述长度与事物本身相等,相当于对事物没有认识。有效复杂性一定介于这两者之间。有效复杂性如何才是可以度量的呢?无法准确或定量的度量,是有效复杂性的缺陷之一。当然,有效复杂性一方面是对客观复杂性的有效理解与最小表达,一方面也应该是一个随人类主体认识能力进化而变化的变量。

二、对随机性的理解

这里需要对随机性概念进行辨析。研究表明,我们通常在三种“随机性”上使用随机性概念:第一,指该事物或事物之状态非常不规则,找不到任何规律来压缩对它的描述;第二,指产生该事物的过程是纯粹偶然的或随机的过程。而该过程所产生的结果,主要是随机的,其信息不可压缩;有时则可能得出包含一定的规律性,其信息可有一定程序的压缩性;极少情况下能够得出非常规则的结果,其信息具有很大压缩性。第三,指伪随机性过程产生的貌似随机性结果,即事实上该过程是非偶然的决定论过程的,但是其结果却非常紊乱(如混沌)。为避免混淆,盖尔曼建议在英文中用"stochastic"表示随机的过程,用"random"表示随机性的结果。本文所指的随机性是结果的随机性,即"random"。我们现在能够认识的随机性中的规律性的东西,是第二种类和第三种类的一部分性质。即对它们的描述有可以压缩其信息的情况。

这样,所谓随机性即有两种,一种即过程随机性,一种结果或状态随机性。而真正意义的随机性是不仅其产生的结果具有随机性的特征,而且产生的过程也是随机性的过程。混沌只具有结果形态上的貌似随机性,而不具有过程的随机性。

三、两类复杂性与随机性关系

由以上关于复杂性的各种描述性定义的探讨,我们可以看出,这里实际上存在着两种关于复杂性完全不同的观点。

观点一,认为“复杂性”相当于随机性。随机性大小是度量认识复杂性的尺度。随机性越多,复杂性越大,完全随机性的信息,则相当于最大复杂性,或根本复杂性。

可以比较一下关于熵的定义,系统内部混乱程度最大,系统熵最大。所以,最大复杂性就相当于最大信息熵。计算复杂性、算法复杂性中相当大的成分包含着这种涵义。像熵,kolmogorov复杂性,以及f.cramer定义的根本复杂性都属于此类复杂性。我认为,此类复杂性的意义对对象本身的复杂性认识没有意义,但是对认识条件下的认识复杂性长度即认识难度却是有意义的,即这种复杂性不是关于认识对象的,而是关于认识能力(如计算机解题所需资源)的。kolmogorov给出了一个对如何度量计算难度有效的“复杂性”概念,但是却使得人们在认识客观对象的复杂性上陷入误区。

观点二,认为“复杂性”不等于随机性,而是胜于随机性的、人们对事物的复杂性的有效认识。

这两类复杂性哪个更科学和准确呢?我们需要仔细研究一下不同情况。我们要证明复杂性不等于随机性,但是复杂性又离不开结果表现为“随机性”的状态。

第一种情况,我通过“同无素的大量粒子组成的体系”的结果简单性表明,随机性不复杂。如气体体系,到达平衡态时,体系熵达到最大。但它复杂呢?不,原因在哪里?实际上,在体系未达到平衡态时,体系内部的分子的微观态存在大量的区别,如速率分布不遵循麦克斯韦分布,这时体系就其微观态的个数多少而言,其微观态个数多,体系是复杂的;但是到了平衡态时,按照麦克斯韦速率分布,绝大多数分子的速率趋于一致,体系的不同的微观态不是增加,而是减少了。故体系进入平衡与均匀,熵趋向最大。到达熵最大时,理想条件系的微观态变成全同态,完全一致,没有不同的微观态了。体系因而变得简单了。此时物理学对它可以运用气体定律(实际气体用范德瓦斯气体方程)描述。从信息的程序角度看,描述语句可以写成:

f(p,v,t)=c

换句话说,虽然体系内部此时微观态最随机,但是微观态为全同志,无区别、无演化(体系状态不随时间变化而变化),因此,描述可以极为简单,数据信息可以压缩,即存在着对这种针对全同微观态的统计意义下的简单规律描述。可见,完全随机性的东西不一定复杂,或完全随机性的东西有最简单的情况。因此,把随机性等同于复杂性至少存在反例。

第二种情况,我通过“混沌”的复杂性表明它不是随机性的复杂性。混沌是一种貌似随机的复杂性状态。说它貌似随机,即指它的产生不是随机性(stochastic)所为,而是确定性体系所为。但是它的微观态具有“随机性”(random),即混沌局域内没有两个相同的状态,这种混沌与平衡态的无序完全不同。此时,体系内部的微观态个数随演化时间长度增加而增加,区别越来越大,越来越多,混沌的程序也随演化时间增加,这样对混沌的全部微观态描述就是不可能的了。然而,属于复杂性态的混沌态却不能作为复杂性等于随机性的证明,因为混沌不是随机性,而是貌似随机性的东西。对此,混沌现象和规律的发现者、美国气象学家洛伦兹作了这样的说明:“我用混沌这个术语来泛指这样的过程——它们看起来是随机发生的,而实际上其行为却由精确的法则决定。”[9]这表明混沌行为的重要属性是确定性,而不是随机性,即对处于混沌行为状态的系统来说,“现有状态完全或几乎完全决定未来,但却不是看上去如此”。那么,确定性的混沌行为为什么会看上去像是随机的呢?他认为,这是因为“在某些动力系统中,两个几乎一致的状态经过充分长时间后变得毫不一致,恰如从长序列中随机选取的两个状态那样。”([9],p.6)

第一种情况和第二种情况还有一个差别,那就是,产生第一种情况的办法是随机性(stochastic)的,因此对其产生过程我们是无法描述的;但是对结果或体系最终结果或体系整个状态我们能够用简单方法(统计方法)加以描述。而产生第二种情况的方法是确定性的,是有其简单性(动力学)方法的,对其产生过程或演化过程的一部分(在有限时间内)我们可以描述,但是对结果或体系最终结果或体系整个状态我们无法加以描述。换句话说,我们无法产生第一种情况,但是能够描述它;我们能够产生第二种情况,但是无法描述它。

这种情况使我想起突变论创始人托姆对“理解”和“行动”的精辟见解。按照托姆的观点,整个科学活动可比作一个连续进行过程,这一过程具有两极。一极代表纯粹知识:其基本目标是理解现实。另一个极涉及行动:其目标是对现实采取有效行动。传统的、目光短浅的认识论不赞成这种两极说,因为要采取有效的行动,总必须先“理解”。相应于这两种对科学所持的相反观点,存在两种不同的方。“行动”说在本质上是解决局部的问题,而“理解”说却试图要找到通用解(也即整体解)。明显的矛盾是,求解局部问题需要使用非局部手段,而可理解性则要求将整体现象化为几种典型的局部情况。[10]上述对无序和混沌的复杂性情况的告诉我们,这种传统认识论的观点可能是错误的。因为有这样的情况,我们对它已理解透彻,却无力对它采取任何行动。反过来,有时我们对现实世界能采取有效行动,但对其所以有效的原因却茫然无知。几乎可以毫不夸张地说,无序的简单性和混沌的复杂性为这种情况提供了佐证。我们能够产生和控制混沌,但是对混沌复杂性的认识还没有完全转化为盖尔曼意义上的有效复杂性。关于混沌类型的复杂性,我们目前就知之甚少,我们只了解混沌具有对初值的极端敏感性,具有某种类型的吸引子(局域性),混沌具有微观结构。我们计算的越细致,混沌也越反映出层次间的自相似性和嵌套性,它也就越复杂。

我们研究一个问题,一般先要界定清楚问题和环境。如果不能清楚地界定问题,你能拿它怎么办呢?然而,许多复杂性问题都是其内容尚未界定清楚的、并且在不断生成的问题,其环境因时间的推移而不断变化。适应性作用只是对外界对它的回报做出反应,而用不着考虑清楚行动的意义和对行动背后的理解。

复杂性问题的复杂正在于此。作用者面对的是界定不清的问题、界定不清的环境和完全不知走向的变化。只要略想片刻就会认识到,这就是生命的全部含义。人们经常在含糊不清的情况下做出决定,甚至自己对此都不明白。我们是在摸着石头过河,在过河中我们不断改变自己的思想,不断拷贝别人的经验,不断尝试以往成功的经验。

以气象学为例。天气从来不会是一成不变的,从不会有一模一样的天气。我们对一周以上的气候基本上是无法事先预测的,有时1~2天的预报都会产生错误。但我们却能够了解和解释各种天气现象,能够辨认出像锋面、气流、高压圈等重要的气象特征。一句话,尽管我们无法对气象做出完全的预测,但气象学却仍不失为真正的科学。[11]

以上研究表明,第一种类型即所谓随机性的复杂性不是我们要的复杂性,它相当于f.cramer意义的亚临界复杂性(类似简单性),如果把复杂性与这种随机性联系起来,那么说复杂性等于随机性(stochastic),则是不对的;但是如果是第二种意义的复杂性则与貌似随机性的随机性(random)结果相互关联在一起。那么的确存在随机性越大,似乎越复杂的情况。但是这里需要注意的是,信息熵在这里决不是热力学熵,另外,产生这种复杂性的原因也不是随机性。

所以在说复杂性与随机性的关系时,我们一定要辨别所说的随机性是什么随机性,是stochastic呢,还是random。我们是否可以这样说,复杂性是具有random性态的东西,而不是由stochastic产生的。

四、复杂性与状态随机性及其他

在随机性(random)基础上建立起来的复杂性,还应该继续加以。我们先暂时去掉第二种随机性(stochastic),于是这里还存在两种random意义下的随机性。第一种是非常不规则结果,从而找不到任何规律来压缩对它的描述的随机性,另一种是貌似随机性的结果,即由非偶然的决定论过程所产生的,但是其结果却非常紊乱(如混沌)的随机性。在第一种随机性情况下,无法得到对事物的认识,描述长度将同事物本身一样。该事物我们认为复杂吗,如果不复杂为什么我们无法认识?如果承认它不复杂,那么就需要承认除了复杂性成为我们认识的障碍以外,我们认识的障碍还有其他。有其他障碍吗?如果承认其复杂,我们就需要承认世界上存在完全无规则的东西,它无法认识。而这点与我们关于世界是有规律的假定是矛盾的,似乎进入了不可知论。看起来,我们只能等待认识进步来解决该问题。

因此,我建议,在假定这个世界不断演化的前提下,把对应于第一类随机性(非常不规则,而无法压缩信息串)的复杂性称为“潜在复杂性”(potential complexity),而把对应于第二类随机性(貌似随机性的结果,非常紊乱)的复杂性称为“有效复杂性ⅱ”,以区别盖尔曼的“有效复杂性”。因为盖尔曼把对应于第一种随机性中可认识的复杂性称为“有效复杂性”(我们把它称为复杂性ⅰ),有效复杂性不等于我们对该对象的认识达到了所有细节全部认识完毕,无一遗漏。而是指这种复杂性抓住了该对象的基本方面和特性,使得该对象成为科学研究的实在对象。

这样在随机性(random)背景下的复杂性可以分类为如下:

附图

五、余论:一些未解问题

随着对复杂性与随机性关系的讨论深入,我们自然会问:对随机性本身而言,它对认识客观复杂性就没有意义吗?现在最大的问题是,当我们面对一系列“貌似”随机性的东西,我们并不清楚它在演化过程中未来会如何?第一,在更广阔的场景中和更长的时间序列中它是真随机性,还是伪随机性?第二,对一个有限的时间和实践而言,现在它显现为随机性,并不能保证它以后的演化也是随机性的。所以,我们即便认为真随机性中不包含复杂性,我们在有限的时间内也不可能判定事物的后演化过程一定是非随机性的,或随机性的,从而也就无法判断其中是否有意义,即包含有效的复杂性。

另外,如果随机性中不包含有效的意义,我们如何说它复杂呢?这里马上就有一个例子:猴子在计算机键盘上随机地敲出的100万个符号组成的“文本”与莎士比亚的《哈姆雷特》哪个更复杂呢?按照根本复杂性=最大随机性的观点,那一定是前者复杂于后者;而按照有效复杂性的观点则后者复杂于前者。在与随机性意义的关系上看,如果承认随着思想中包含第一类随机性(stochastic)越大,思想就越复杂的话,我们就得承认疯子的胡乱思想最复杂,因为无法对他的思想加以认识和把握(编程,也许在疯子的思想世界里,被认为可以把握,但是这两个世界即理性世界与非理性世界无法通约,除非一个理性人疯后又恢复为理性人并且没有遗忘疯子的经历和思想),我们也要承认谁的语言最晦涩难懂,谁的理论最复杂。如果认为非随机性的表达有效复杂性的思想才复杂,我们则可利用有效复杂性这个尺度上去度量历史上思想家的理论的复杂性程度。事实上,我们对思想家的思想复杂程度常以其思想深刻、细致和广度,以及是否逻辑自洽和论证充分判定的。我想,比较两个思想的复杂性程度时,可以通过是否对相同思想和思想对象的解读更深入、更细致和更广泛,以及思想体系的层次逻辑四个尺度加以把握,这四个尺度实际是:信息深度、结构层次、细致性、广度(包括问题范围性)。

可见,还是有效复杂性的实际意义更好些。但是一个没有随机性的世界,只有貌似随机性的世界虽然充满了不确定性,但是这却不解渴,我们那些突然的变化,我们那些临时的改变,那些偶然性的东西也是存在的,那么它们对复杂性就没有贡献了吗?如果存在这种贡献,又应该如何计量这种由偶然性或随机性产生的复杂性呢?

【参考文献】

[1] joel i.seiferas,machine-lndependent complexity theory,[j]handbook of theoretical computer science,edited by j.van leeu wen,elsevier science publishers b.v.,1990,p.165.

[2] a.n.kolmogorov,three approaches to the definition of the concept'quantity of information',[j]problem of information tranission,1(1965)1.

[3] g.j.chaitin on the length of progams for computing finite binary sequences,[j]j.acm 13(1966)547.

[4] r.j.solomonoff,a formal theory of inductive inference,[j]inform.and control 7(1964)1,224.

[5] ming li,p.m.b.vitányi,kolmogorov complexity and it applications,[j]handbook of theoretical computer science,edited by j.van leeuwen,elsevier science publishers b.v.,1990,p.197.

[6] r.badii,a.politi,complexity:hierarchical structures and scaling in physics,[m]cambridge university press,1997,p.7.

[7] f.cramer,chaos and order,the complex structure of living systems,[m],vch,new york,1993,p.214.中译本已由柯志阳、吴彤译出,上海科技教育出版社2000年出版。

[8] murray gell-mann,the quark and the jaguar,adventures inthe simple and the complex,w.h.freeman & co.,new york,1994,p.44;中译本:〔美〕盖尔曼·夸克和美洲豹——简单性和复杂性的奇遇.[m]长沙:湖南科学技术出版社,1998,第47页。

[9] 〔美〕e.n.洛伦兹著,刘式达等译,混沌的本质,[m]:气象出版社,1997.第3页。

[10] 〔法〕勒内·托姆.突变论:思想和应用,[m].上海:上海译文出版社,1989,第141页。

[11] 〔美〕m.沃尔德罗普:复杂(陈玲译),[m]:三联书店,1997,第356-357页。

走向计算主义_其他哲学论文 篇六

人类基因组序列的测定及其进一步工作、dna计算机的研究以及人工生命和人工智能等学科的新进展向我们表明,我们可以从一个全新的视角,即计算的视角来看我们的世界:“自然界这本大书是用算法语言写的!”“宇宙是一个巨大的计算系统!”

【关键词】计算/细胞自动机/dna计算机/人工生命/人工智能

【正文】

一、引言

我们已进入了21世纪!在世纪之交的2000年,科学界的两大成就引起世人的广泛关注,这就是人类基因组序列的测定和可进行自我设计与进化的进化机器人的出现(lipson & pollack 2000)。人类基因组序列的测定曾产生广泛的社会反响,进化机器人的出现也引起不小的震动,尽管由于对前者的过分关注影响了一些人对后者的关注。人类基因组研究的是一般生物学的内容,而进化机器人的出现则是一门新兴的计算机与生物学交叉的前沿学科——人工生命的突破。这两个研究领域虽然形式完全不同,但它们的目标都是试图理解生命的本质。两个领域实际上都是从20世纪80年代后期开始进行的。经过10多年的研究,两个领域又在同一时间取得较大的突破。这对生命科学意味着什么呢?

基因组是生命的信息库和程序库。生命的生长、发育、分化、免疫反应等特征表面上看是一系列生物化学反应在时间和空间上的精巧匹配的结果,但本质上是包含在基因组中的生命信息和程序的表达和执行的表现。所有的生命信息和程序都以不同的形式记载在a、g、t、c四种碱基书写的一维dna序列中。人类基因组计划的目的就是要解开这四字天书。www.meiword.CoM2000年6月26日科学家公布人类基因组“工作框架图”,标志着我们已成功地测出了人类23对染色体上的碱基序列。半年多之后,即20xx年2月12日科学家们又公布了人类基因组图谱及初步结果。结果表明,人类基因组由31.647亿个碱基对组成,共有3万至3.5万个基因,比线虫多1万个,比果蝇多2万个,远小于原先10万个基因的估计。另外,科学家还发现与蛋白质合成有关的基因只占整个基因组的2%。人类在成功地发现这四字天书的全文时,又陷入新的迷茫:生物的基因与计算机的程序类似,为什么人类的染色体中有那么多的冗余dna?决定人类的性状的dna序列或基因到底有多少?它们是怎样组合的?它们怎样相互作用产生出各种复杂的生命现象?因此,新的千年,生命科学将进入到以破译基因信息为主要内容的后基因组时代。在后基因组时代,计算将成为生命科学的一个重要内容。人类基因组的序列数据,如果用大城市电话号码薄的形式编辑出来出版,大约需要每册1000页总计200册这样的容量才能容纳下来。如果一个人每天24小时不停地阅读这套书,需要26年的时间才能读完一遍。这套书是a、t、g、c四个字母的排列,除了在不同染色体间可以分段外,全部是没有任何间隔或者标点的连续字符串。想要通过肉眼阅读并从中发现规律将是非常困难的。如此巨大的数据必须借助计算机技术来存储和。尽管基于计算机的信息学已经取得了长足的进展,但要把如此巨大的人类基因组信息组织起来供全人类分享使用,一般的信息技术还不具备这样的能力。生物信息学、基因组语言学和计算生物学就是在这样的背景下产生的新兴学科。它们利用计算机和新的数学方法,生物基因组的序列数据,寻找生物生长和发育规律。

人工生命虽然没有考虑现实的以碳为基础的生命的运作问题,但它一开始就从计算的视角来思考生命的本质问题。人工生命把生命的本质看作是一种形式,这种形式可以通过程序或算法表现出来。所以,在人工生命看来,生命的本质实际上就是一种算法。这种算法的运行就表现出生命。人工生命的很多研究就是通过计算机编程的方法揭示生命的本质的。

基因组和人工生命研究从不同的方面探讨着同一个问题,即生命的本质问题。两个领域的研究和突破说明,信息、算法和计算等概念已经成为理解生命本质的重要概念。

二、计算与生命的本质

“计算”是一个无人不知无人不晓的数学概念。然而,正如爱因斯坦所说,一个概念愈是普遍,愈是频繁地进入人们的视野,我们要想理解它们的意义也愈困难。因此,虽然人类很早就学会了加、减、乘、除等的运算,但直到20世纪30年代以前,还没有什么人能真正说清楚计算的本质是什么。从20世纪30年代开始,由于哥德尔(kurt )、邱奇(a.church)和图灵(alan turing)等人的工作,人们终于对计算的本质有了清楚的理解,由此形成了一个专门的数学分支:递归论和可计算性理论,并因此导致计算机科学的诞生。

那么,什么是计算呢?抽象地说,计算就是映射或基于规则的符号串的变换过程。从一个已知的符号串开始,按照一定的规则,一步一步地改变符号串,经过有限步骤,最后得到一个满足预先规定的符号串,这种变换过程就是计算。比如,从1+1变换成2,就是一个加法计算;从x变换为3x[2]就是微分计算。按这个定义,定理证明,文字翻译等也都是计算,因为它们都是一种符号串变换过程。数学家们已经证明,凡是可以从某些初始符号串开始在有限步骤内得到计算结果的函数都是一般递归函数,或者说,凡是可计算的函数都是一般递归函数。

与计算紧密联系的一个概念是“算法”。算法是求解某类问题的通用法则或方法,即符号串变换的规则。人们常常把算法看成是用某种精确的语言写成的程序。算法或程序的执行和操作就是计算。从算法的角度讲,一个问题是不是可计算的,与该问题是不是具有相应的算法是完全一致的(郝宁湘,2000)。

长期以来,计算和算法等概念一直与人类的认识活动相联系,计算机带给人类思维的最大冲击莫过于将这些范畴泛化到了自然界。平常我们说到计算的时候总是暗含有一个计算的主体,即人在计算。其实,计算并不一定必须由人来完成,它完全可以通过机器或物理系统来完成。计算机的先驱图灵已经证明,任何可计算的函数都可以通过机器来完成。之所以如此,是因为映射或符号串变换必须有一种具体实现的机制。从这个角度讲,我们完全可以把计算看作是基于规则的物理状态的变换,因为所谓的符号就是特定的物理状态,映射或符号变换就是从一种物理状态变换到另外一种物理状态的过程。我们知道,自然界的事件都是在自然规律作用下的过程。如果我们把特定的自然规律看作是特定的“算法”的话,那么,特定的自然过程实际上就可以看作是执行特定自然“算法”的一种“计算”。这样来看,在我们的周围就存在着形形的“自然计算机”,而生命和心灵是其中最有特色的两个(邓少平,1996)。

人类最早从计算的视角审视问题的是关心人的认识本质的哲学家。霍布斯曾把思维的本质看作是计算;莱布尼兹也认为,一切思维都可以看作是符号的形式操作的过程。不过,真正把思维理解为计算,并付诸实施的是人工智能领域的科学家。人工智能的先驱图灵认为,人的大脑应当被看作是一台离散态机器。尽管大脑是由粘糊糊的“凉粥”一样的物质组成,电子计算机是由生硬的金属物质组成,但它们的本质则是相同的。离散态机器的行为原则上能够被写在一张行为表上,因此与思想有关的大脑的每个特征也可以被写在一张行为表上,因而能被一台计算机所仿效。在1950年发表的论文中,图灵详细论证了心灵的计算本质,并批驳了反对机器能够思维的多种可能的意见。在图灵的影响下,麦卡锡(j.mccarthy)、明斯基(m.l.minsky)、西蒙(h.a.simon)和纽厄尔(a.newell)等人开创了人工智能这样一门新的学科。经过多年的努力,物理符号系统假说、心灵的表征计算理论等相继提出。这些学说的共同特点都是把心灵的本质看作是计算,把思维看作是一种信息加工过程。尽管符号学派后来受到联结主义和基于行为的人工智能学派的挑战,但心灵的本质是计算这一基本的人工智能假说并没有被抛弃。

在图灵提出人的大脑是一台离散态的计算机的思想几乎同一时期,计算机科学的另一个开创者冯诺伊曼(j.von neumann)则开始从计算的视角思考生命的本质问题。冯诺伊曼设想了一架巨大的细胞自动机,这个细胞自动机按着一定的规则运行。冯诺伊曼证明,如果自我繁殖是生命的本质特征,那么这个特征完全可以由细胞自动机获得。冯诺伊曼之后,康韦(j.conway)又证明,特定配置的细胞自动机与图灵机完全等价。兰顿(c.langton)则进一步指出,处于混沌边缘的细胞自动机不仅可以完成复杂的计算,而且可以支持生命和智能(langton 1991)。正是在这样的思想的指导下,兰顿提出了他的人工生命理念。兰顿认为,生命的本质不在具体的物质,而在物质的组织形式。生命并不像物质、能量、时间和空间那样,是宇宙的基本范畴,而只是物质以特定的形式组织起来派生的范畴。这种组织原则完全可以用算法或程序的形式表达出来。所以,只要能将物质按照正确的形式构筑起来,那么这个新的系统就可以表现出生命。而这种所谓的“正确的形式”就是生命的算法或程序。所以,算法和程序是把非生命和生命连接起来的桥梁,是生命的灵魂(邓少平,1996)。

实际上,不只人工生命的科学家把生命的本质看作是算法;几乎同一时期,一些生物学家也开始从计算的视角来思考生命的问题。1994年11月,美国科学家阿德勒曼(l.m.adleman)在《科学》杂志上发表的关于dna计算机理论,从另一个方面说明了生命的算法本质。我们一般人一看到“计算机”这几个字,可能立刻会想起键盘、显示器、存储器等内容。计算机的普及已经使我们习惯了这样一个概念:计算是通过硅片上的电子组件进行的。但是,阿德勒曼反问道:计算非得采用这样一种方式不可吗?他说,“或许我们对计算的看法过于狭隘了。如果计算无处不在,而且能够表现为多种形式,情况又如何呢?是否可能存在一种由相互作用的分子进行计算的液体计算机呢?答案是肯定的(adleman 1998)。”通过把图灵机与生物细胞内dna自我复制过程的比较,阿德勒曼得出细胞就是计算机的思想。不过,阿德勒曼进一步认为,通过适当的方法完全可以设计出用dna进行计算的生物计算机。

阿德勒曼是在阅读沃森的《基因的分子生物学》时意识到生命的计算特性的。沃森在他的书中曾用一些篇幅描述dna聚合酶的功能。从这里,阿德勒曼了解到,“dna聚合酶是酶中之王,是生命的制造者。”在合适的条件下,有了一股dna,dna聚合酶便产生出第二条互补的dna。聚合酶使dna能够复制,而这又使细胞能够复制,最终能够使生物体复制。所以,阿德勒曼认为,dna聚合酶是只有一个分子的神奇的纳米机器,它“跳”到一股dna链上,并沿着它滑下去,“读”出它经过的每一个碱基,并把其互补的碱基“写”到一条新的正在生长的dna链上。他对dna聚合酶的这种作用感到非常惊异。有一天,他突然意识到,这种酶与著名数学家和计算机科学家图灵在1936年描述的一种“玩具”计算机——即图灵机非常相像。图灵机的一种形式由两条纸带和一个称为“有限控制”的装置构成,该装置沿着“输入”纸带移动并读出数据,同时沿着“输出”纸带移动并读出和写入其它数据。阿德勒曼发现,图灵机和dna聚合酶合成互补的dna的机制几乎完全一样。这种相似性说明,dna聚合酶合成互补dna链事实上就是一种计算过程。

不过,阿德勒曼走得更远。因为图灵机虽然看起来简单,但它却是万能的。它可以在编程之后计算任何能够被计算的问题。也就是说,可以对一台图灵机编程,使之作数学运算、下象棋等工作,甚至可以使它产生互补的dna链。而一般生物体内的dna程序已经是固定的,是生物体在历史上经过特定的自然选择形成的。但是,如果我们有能力对之进行改变,即对之进行重新编程,那么,我们就可以用dna计算任何可以计算的问题。所以,阿德勒曼更关心的是如何改变dna的结构使之进行各种计算,比如用dna进行哈密顿路径的计算,但对我们来说,阿德勒曼关于dna聚合酶系统就是计算机的观点更为重要。因为它说明了,生命系统事实上就是一台以分子算法为组织法则的多层次的计算网络。

三、走向计算主义

一旦从计算的视角审视世界,科学家们不仅发现大脑和生命系统是计算系统,而且发现整个世界事实上就是一个计算系统。当康韦证明细胞自动机与图灵机等价时,就有人开始把整个宇宙看作是计算机。因为特定配置的细胞自动机原则上能模拟任何真实的过程。如果真是这样,那么,我们便可以设想一种细胞自动机,它能模拟整个宇宙。实际上,我们完全可以把宇宙看作是一个三维的细胞自动机。基本粒子或其它什么层次的物质实体可以看作是这个细胞自动机格点上的物质状态,支配它们运动变化的规律可以看作是它们的行为规则。在这些规则的作用下,宇宙中的基本粒子发生各种变化,从而导致宇宙的演化。

后来兰顿又指出,处于混沌边缘的细胞自动机不仅可以做复杂的计算,而且可以支持生命和智能。从这里我们可以了解到,宇宙这个巨大的细胞自动机事实上是一个处于混沌边缘的细胞自动机,因为它不仅产生了生命,而且产生了智能。

弗里德金(edward fredkin)是这种观点的积极倡导者。他认为,有可能发现一种单一的细胞自动机规则,在这种规则的作用下,这种细胞自动机不仅能够模拟所有微观的物理现象,而且能够精确地模拟它们(fredkin 1990)。他把这种系统称为“数字力学”(digital mechanics)。如果真的能找到这样的规则,那么我们建立宇宙的统一理论也就不远了。

当然,也有一些人反对把宇宙看作是计算系统的观点。第一个常见的反对意见认为,计算机和细胞自动机太简单,不能把任何事物都加以模拟,除非把宇宙的面容做一些简化。然而,图灵早在20世纪30年代就已证明,图灵机原则上可以计算任何可计算的东西。为了说明他的结论,图灵让他的装置具有无限大的容量。同样对宇宙这个自然细胞自动机来说,因为它本身具有无限大的容量,因此,它就能产生自然规则所决定的任何物理客体。

第二个反对意见与物理定律的可逆性与计算机的运算的不可逆性有关。我们知道,经典力学和量子力学的规律相对于时间都是可逆的。也就是说,如果在描述这些规律的公式中把时间反转,即把t变为-t,公式的结果并不会改变。或者说,如果我们能把时间反转,我们的行星照样会在原来的轨道上绕太阳旋转。原子的性质也不会有什么改变。但计算机的运算却不是这样,计算机的运算是不可逆的,因为组成计算机的处理器的逻辑门具有不可逆性。无论什么时候,逻辑门接通或关掉,有些能量便无可挽回地以热的形式损失掉了。因此,必然提出这样的问题:如果物理定律是可逆的,而计算机的运算是不可逆的,那么宇宙怎么可能是一部计算机呢?ibm的工作者兰多尔(r.landauer)和贝奈特(c.bennett)曾经证明,在信息形式的改变过程中的计算并不需要任何能量,但信息的消除却需要能量。也就是说,完成计算所需的最小能量和丢弃的信息量直接有关。因此,如果我们在进行计算时,保留所有的中间结果,那么我们就可以进行逆运算。如果我们毁掉中间结果,则计算就失去其可逆性,其能量也将随之消耗(brown 1990:38)。弗里德金从这里受到启发,他设想了一种没有信息量损失的方案。一般的逻辑门,比如“与”门,通常有一个输入和两个输出。这样的门是不可逆转的。但弗里德金设想,如果人们作出安排,使它既能传递“与”门的输出值,也能传递它的输入值,即现在使它具有三种输出值,那么,“与”门就变成可逆的了。因为信息在这里不会有损失。理论上这种计算机能计算常规计算机所能计算的任何事情。不过,迄今为止还没有人能做成这样的一种机器(brown 1990:38)。但弗里德金毕竟找到了使计算可逆的方法。

第三种反对宇宙作为计算机的观点是认为生命不能完全用计算的方法表达。然而,正如前面所述,生命与计算密切相关,生命的本质事实上就是计算。

第四种反对宇宙作为计算机的意见与我们这个世界上最为神奇的现象:人类的意识有关。如果宇宙是一部计算机,并且所有计算机在功能上都是等效的,那么计算机必定能模拟宇宙中所有的特性,包括我们的意识。计算机刚刚产生,人们就禁不住希望能使计算机具有人的智能。1950年图灵在《心》(mind)杂志上发表了一篇题为“计算机器与智能”的文章,开篇就写道:“我准备考虑这样一个问题:机器能思维吗?”在这篇文章中,他提出了著名的“图灵检验”的思想,以说明机器能够像人一样具有智能。然而,在图灵刚刚提出他的思想的时候,就有人提出反对意见,这导致支持和反对人工智能的两大派别的旷日持久的争论。在反对人工智能的意见中,比较有名的一种观点是美国哲学家卢卡斯(j.lucas)提出的。1961年卢卡斯在36卷的《哲学》(philosophy)杂志上发表了一篇名为“心、机器和哥德尔”的文章,从哥德尔定理出发对图灵观点进行了批评。他在文章中说:“哥德尔定理必须应用于控制论的机器,因为机器的本质应当是一个形式系统的具体实现。这意味着,给定任何一致的、能够做简单的算术的机器,必定有一个公式机器不能证明它是真的——就是说,该公式在这个系统中不能被证明,但我们却能看出它是真的。因此,没有机器可以成为心的完全的或适当的模型,心在本质上不同于机器(lucas 1961:113)。”比如,我们说:“这个公式在这个系统中是不能证明的”,如果这个公式在这个系统中是能证明的,那么我们就得到了一个矛盾:如果它在这个系统中被证明了,那么在这个系统中它就不是不能证明的,因此“这个公式在这个系统中是不能证明的”就是错的。同样地,如果它在这个系统中是能证明的,那么它就不是错的,而是正确的,因为在任何一致的系统中没有任何错误的东西能够在这个系统中被证明,除非它是正确的。所以,公式“这个公式在这个系统中是不能证明的”在这个系统中就会导致自相矛盾。所以,他接着说,“依我看,哥德尔定理证明了机械论是错误的,也就是说,心不能解释成机器。”因为,“不论我们创造怎样复杂的机器,如果它是机器,就将对应于一个形式系统,这个系统反过来将因为发现在该系统内不可证明的公式而受到哥德尔程序的打击。机器不能把这个公式作为真理推导出来,但是人心却能看出它是真的。因此该机器仍然不是心的恰当模型。我们总是试图制造出心的一种机械模型——它从本质上是‘死’的,但是,实际上是‘活’的心灵,总能比任何形式的、僵化的、死的系统做得更好(lucas 1961:115)。”

1989年,英国数学家、物理学家罗杰·彭罗斯(roger penrose)出版了一本风靡全球的著作:《皇帝的新脑:计算机、心和物理定律》。在这本着作中,他对卢卡斯论证作了进一步的扩展。彭罗斯认为,根据哥德尔定理,者的“真理”概念不可避免地是不完备的,因此,数学真理的概念不能包容于任何的框架之中。数学真理是某种超越纯粹的东西。不管把哪一个一致的形式系统应用于算术,总存在一些命题我们可以看到它是真的,但用者提出的过程却不能确定。所以,我们得到真理判断的心理过程,不能简单地归结为某个特别形式系统的步骤。虽然我们不能从公理推出哥德尔命题,却能看到其有效性。这类涉及反思原理的“看见”需要数学的洞察力,而洞察不是能编码成某种数学形式系统的纯粹算法运算的结果。我们具有利用洞察可以看到实际上必须为真的命题,比如,图灵机的不停运行,但是给定的算法动作不能告诉我们这些。所以,人总是比计算机聪明,计算机不可能完全像人那样思维。

卢卡斯和彭罗斯等人的观点能驳倒思维或认知的计算主义观点吗?回答是否定的。卢卡斯的“心、机器和哥德尔”的论文一发表,就有人对他的观点进行了批评。在后来的37卷《哲学》杂志上,美国哲学家怀特利(c.h.whitely)发表了虽简短但强有力的批驳文章:“心、机器、哥德尔:回应卢卡斯先生”。在这篇文章中,怀特利对卢卡斯论证给出了一个非常有趣的反论证。考虑这样一个陈述:“卢卡斯不能一致地肯定(assert)这个陈述。”这句话是一个真的陈述,因为如果卢卡斯肯定这个陈述,他自己就会自相矛盾。这就是说,怀特利和我们都能看到这个陈述是真的,而卢卡斯自己却不能,因为当他肯定这个陈述时,就等于他同时否定了这个陈述。由此,怀特利反问道,这是不是意味着怀特利和我们能够证明事情,而卢卡斯不能呢?这是否意味着卢卡斯的思维类似机器,而怀特利和我们的思维不是呢?显然不能这么说。所以,怀特利认为,卢卡斯的论证是有缺陷的。

我们也可以通过类似的方式来反驳彭罗斯的观点。彭罗斯在证明人心胜过计算机时,他谈论到哥德尔定理,但在实际论证时,他用的是与哥德尔定理等价的停机问题的例子。他论证说,对任一程序p,没有一种算法能决定p是否停机。人类具有能看出这个真理的“洞察力”,而机器却没有,所以人心胜过计算机。现在,假设彭罗斯的“洞察力”来自他大脑的某种叫做pp的东西。要知道pp的工作机制,彭罗斯需要深入到他的大脑内部。但如果彭罗斯为了回答这个问题精确地研究他的大脑的话,他就会遇到不可避免的矛盾。

假若我们有一个工具,利用它我们可以检查彭罗斯的大脑细节。经过一段时间研究之后,我们发现一个神经元g,它具有这样的性质:g通常都处在休眠状态,但如果我们告诉彭罗斯g是处在休眠的状态之后,g就迅速被激发。因为当我们告诉彭罗斯这件事,就会彭罗斯的大脑的活动。因此,就有这样一个彭罗斯永远不知道的真的事实,因为在他要知道它的时候,它就处于新的状态。而我们知道这一点,因为我们“处在系统之外”。

当然,具有这样性质的神经元可能并不存在。但很可能彭罗斯大脑行为的一些方面他根本不可能知道,因为知道它们就导致它们的变成新的状态。因此,彭罗斯自己也逃不出哥德尔定理的限制。

这个例子说明,问题的关键是我们能不能跳到系统之外去看问题。哥德尔陈述的正确性在系统之内无法证明或否证,但在系统之外,我们发现这些陈述的确正确。当卢卡斯和彭罗斯在论证人心胜过计算机时,他们把人放在系统之外,但却把计算机放在系统之内。我们让我们自己处在一个更高的层次来确定哥德尔命题的真伪,却让计算机在其形式系统内部来确定。卢卡斯和彭罗斯等人这样来问题,肯定得出对人有利的结论。

总之,计算或算法的观念在当今已经渗透到宇宙学、物理学、生物学乃至经济学和社会科学等诸多领域。计算已不仅成为人们认识自然、生命、思维和社会的一种普适的观念和方法,而且成为一种新的世界观。我们完全有理由相信,整个世界都是由算法控制,并按算法所规定的规则演化的。宇宙是一部巨型的计算装置,任何自然事件都是在自然规律作用下的计算过程。现实世界事物的多样性只不过是算法的复杂程度的不同的外部表现。“整个世界的演化:从虚无到存在,从非生命到生命,从感觉到思维,实际上都是一个计算复杂性不断增加的过程(郝宁湘,2000)。”不仅生命和思维的本质是计算,自然事件的本质也是计算。这或许是当今生命科学和相关的学科给我们的最大的启示。

在古希腊,当人类开始理性地、思辨地思考世界的本原时,毕达哥拉斯提出:“数是万物的本原!”

在近代,当人类开始科学地研究大自然时,伽利略说,“自然界这本大书是用数学语言写的!”开普勒也感叹道,“上帝一定是个几何学家!”

今天,我们已进入信息时代。关于自然的本质,我们应当说什么呢?

“自然界这本大书是用算法语言写的!”“宇宙是一个巨大的计算系统!”

【参考文献】

[1] adleman,l.m.(1994)."molecular computation of solutions to combinatorial problems."science,266:1020-24.

[2] adleman,l.m.(1998)."computing with dna."scientific american,279(2):54-61.

[3] brown,j.(1990)."is the universe a computer?"new scientist,127(july 14):37-39.

[4] fredkin,e.(1990)."digital mechanics."physica d,45:254-270.

[5] langton,c.g.(1991)."life at the edge of chaos."in c.g.langton,c.taylor,j.d.farmer,& s.raussen,eds.artificial life ⅱ.sfi studies in the sciences of complexity,proc.vol.x.redwood city,ca:addison-wesley.

[6] lipson,h.and pollack,j.b.(2000)."automatic design and manufacture of robotic lifeforms."nature,406,974-978.

[7] lucas,j.r.(1961)."minds,machines and ."philosophy,36:112-127.

[8] turing,a.m.(1950)."computing machinery and intelligence."mind,59:433-60.

[9] whitely,c.h.(1962)."minds,machines and :a reply to mr.lucas."philosophy,37:61-62.

[10] 邓少平(1996):“算法与生命”。《科学》,10:6-8。

[11] 郝宁湘(2000):“计算:一个新的哲学范畴”。《哲学动态》,11:32-36。

[12] 彭罗斯(1998):《黄帝新脑》。许明贤等译。长沙:湖南科技出版社。

当代量子引力及其哲学反思_其他哲学论文 篇七

【内容提要】本文从量子引力概念的入手,介绍了当代量子引力研究的进展,评析了其取得的主要成就,并对之作了简略的哲学反思。

【关键词】超弦/m理论/圈量子引力/哲学反思

【正文】

本文分四部分。首先明确什么是量子引力?其次给出当代量子引力发展简史,更次概述当代量子引力研究主要成果,最后探讨量子引力的一些哲学反思。

一、什么是量子引力?

当代基础物理学中最大的挑战性课题,就是把广义相对论与量子力学协调起来[1]。这个问题的研究,将会引起我们关于空间、时间、相互作用(运动)和物质结构诸观念的深刻变革,从而实现20世纪基础物理学所提出的空间时间观念的量子革命。

广义相对论是经典的相对论性引力场理论,量子力学是量子物理学的核心。凡是研究广义相对论和量子力学相互结合的理论,就称为量子引力理论,简称量子引力。探讨量子引力卓有成效的理论,主要有两种形式。第一,是把广义相对论进行量子化,正则量子引力属于此种。第二,是对一个不同于广义相对论的经典理论进行量子化,而广义相对论则作为它的低能极限,超弦/m理论则属于这种。

圈(loop)量子引力[2]是当前正则量子引力的流行形式。正则量子引力是只有引力作用时的量子引力,和超弦/m理论相比,它不包括其它不同作用。它的基本概念是应用标准量子化手续于广义相对论,而广义相对论则写成正则的即hamiltonian形式。正则量子引力根据历史发展大体上可分为朴素量子引力和圈量子引力。粗略来说,前者发生于1986年前,后者发生于1986年后。WWw.meiword.cOm朴素量子引力由于存在着紫外发散的重正化困难,从而圈量子引力发展成为当前正则量子引力的代表。

超弦/m理论的目的,在于提供己知四种作用即引力和强、弱、电作用统一的量子理论。理论的基本实体不是点粒子,而是1维弦、2维简单膜和多维brane(广义膜)的延展性物质客体。超弦是具有超对称性的弦,它不意味着表示单个粒子或单种作用,而是通过弦的不同振动模式表示整个粒子谱系列。

圈量子引力和超弦/m理论之外,当代量子引力还有其它不同方案。例如,euclidean量子引力、拓扑场论、扭量理论、非对易几何等。

二、当代量子引力研究进展

我们主要给出超弦/m理论和圈量子引力研究的重大进展。

1.超弦/m理论方面[3]

弦理论简称弦论,虽然在20纪70年代中期,已经知道其中自动包含引力现象,但因存在一些困难,只是到80年代中期才取得突破性进展。

1)80年代超弦理论

弦论发展可粗略分为早期弦理论(70年代)、超弦理论(80年代)和m理论(90年代)三个时期。我们从80年代超弦理论开始,简述其研究进展。

1981年,m·green和j.schwarz提出一种崭新的超对称弦理论,简称超弦理论,认为弦具有超对称性质,弦的特征长度已不再是强子的尺度(~10[-13]厘米),而是planck尺度(~10[-33]厘米)。

1984年,green和schwarz证明[4],当规范群取为so(32)时,超弦i型的杨-mills反常消失,4粒子开弦圈图是有限的。

1985年,d.gross,j.harvey[5]等4人提出10维杂化弦概念,这种弦是由d=26的玻色弦和d=10超弦混合而成。杂化弦有e[,8]×e[,8]和so(32)两种。

同年,p.candlas,g.horowitz,a.strominger和e.witten[6]对10维杂化弦e[,8]×e[,8]的额外空间6维进行紧致化,最重要的一类为calabi-丘流形。但是这类流形总数多到数百万个,应该根据什么原则来选取作为我们世界的c-丘流形,至今还不清楚,虽然近10多年来,这方面的努力从来未中断过。

1986年,提出建立超弦协变场论问题,促进了对非微扰超弦理论的探讨。在诸种探讨方案中,以e.witten的非对易几何最为突出[7]。

同年,人们详细地研究了超弦唯象学,例如e[,6]以下如何破缺及相应的物理学,对紧致空间已不限于c-丘流形,还包括轨形(orbifold)、倍集空间等。

人们常把1984-86年期间对超弦研究的突破,称为第一次超弦革命。在此期间建立了超弦的五种相互的10维理论,而且是微扰的。它们是i型、iia型、iib型、杂化e[,8]×e[,8]型和so(32)型。

2)90年代m理论

经过80年代末期和90年代初期,对超弦理论的对偶性、镜对称及拓扑改变等的研究,到1995年五种超弦微扰理论的统一性问题获得重大突破,从此第二次超弦革命开始出现。

1995年,witten在南加州大学举行的95年度弦会议上发表演讲,点燃起第二次超弦革命。witten根据诸种超弦间的对偶性及其在不同弦真空中的关联,猜测存在某一个根本理论能够把它们统一起来,这个根本理论witten取名为m理论。这一年内witten、p.horava、a.dabhulkar等人发表论文,给出ⅱa型弦和m理论间的关系[8]、i型弦和杂化so(32)型弦间的关系、杂化弦e[,8]×e[,8]型和m理论间的关系等。

1996年,j.polchinski、p.townscend、c.baches等人认识到d-branes的重要性。积极进行d-branes动力学研究[9],取得一定成果。同年,a.strominger、c.vafe应用d-brane思想,计算了黑洞这种极端情形的熵和面积关系[10],得到了和bekenstein-hawking的熵-面积的相同表示式。g.callon、j.maldacena对具有不同角动量与电荷的黑洞所计算的结果指出,黑洞遵从量子力学的一般原理。g.collins探讨了量子黑洞信息损失问题。

1997年,t.banks、j.susskind等人提出矩阵弦理论,研究了m理论和矩阵模型间的联系和区别。

同年,maldacena提出ads/cft对偶性[11],即一种anti-de sitter空间中的iib型超弦及其边界上的共形场论之间的对偶性假设,人们称为maldacena猜测。这个猜测对于我们世界的randall-sundrum膜模型的提出及hawking确立果壳中宇宙的思想,都有不少的启示。

2.圈量子引力方面[12]

1)二十世纪80年代

1982年,印度物理学家a.sen在phys.rev.和phys.lett.上相继发表两篇文章,把广义相对论引力场方程表述成简单而精致的形式。

1986年,a.ashtekar研究了sen提出的方程,认为该方程已经表述了广义相对论的核心内容。一年后,他给出了广义相对论新的流行形式,从而对于在planck标度的空间时间几何量,可以进行具体计算,并作出精确的数量性预言。这种表述是此后正则量子引力进一步发展的关键。

同年,t.jacobson和l.olin求出wilson圈解。在引进经典ashtekar变量后,他们在圈为光滑且非自相交情形下,求出了正则量子引力的wdw方程解。此后,他们又找到了即使在圈相交情况下的更多解。

1987年,由于hamiltonian约束的wilson圈解的发现,c.revolli和olin引进观测量的经典possion代数的圈表示,并使微分同胚约束用纽结(knot)态完全解出。

1988年,v.husain等人用纽结理论(knot theory),研究了量子约束方程的精确解及诸解间的关系,从而认为纽结理论支配引力场的物理量子态。同年,witten引进拓朴量子场论(tqft)的概念。

2)二十世纪90年代

1990年,rovelli和olin发表论文指出,对于在大尺度几何近似变为平直时态的研究,可以预言planck尺度空间具有几何断续性。对于编织的这些态,在微观很小尺度上具有“聚合物”的类似结构,可以看作为j.wheeler时空泡沫的形式化。

1993年,j.iwasaki和rovelli探讨了量子引力中引力子的表示,引力子显示为时空编织纤维的拓朴修正。

1994年,rovelli和olin第一次计算了面积算子和体积算子的本征值[13],得出它们的本征谱为断续的重大结论。此后不久,物理学者曾用多种不同方法证明和推广这个结论,指出在planck标度,空间面积和体积的本征谱,确实具有分立性。

1995年,rovelli和olin利用自旋网络基[14],解决了关于用圈基所长期存在的不完备性困难。此后不久,自旋网络形式体系,便由j.baez彻底阐明。

1996年,rovelli应用k.krasnov观念,从圈量子引力基本上导出了黑洞熵的bekenstein-hawking公式[15]。

1998年,olin研究圈间的相似性,开始探讨圈量子引力论的统一问题。

三、当代量子引力理论主要成就

1.超弦/m理论方面

1)弦及brane概念的提出

广义相对论中的奇性困难、量子场论中的紫外发散本质、朴素量子引力中的重正化问题,看来都起源于理论的纯粹几何的点模型。超弦理论提出轻子、夸克、规范粒子等微观粒子都是延伸在空间的一个区域中,它们都是1维的广延性物质,类似于弦状,其特征长度为planck长度。m理论更推广了弦的概念,认为粒子类似于多维的brane,其线度大小为planck长度。为简单起见,我们把brane也称作膜。超弦/m理论中,用有限大小的微观粒子替代粒子物理标准模型中纯粹几何的点粒子,这是极为重要且富有成效的革命性观念。

2)五种微扰超弦理论

这五种超弦的不同在于未破缺的超对称荷的数目和所具有的规范群。i型有n=1超对称性,含有开弦和闭弦,开弦零模描述杨-mills场,闭弦零模描述超引力。ⅱa型有n=2超对称性,旋量为majorana-weyl旋量,不具有手征性,自动无反常,只含有闭弦,零模描述n=2超引力。iib型同样有n=2超对称性,具有手征性。杂化弦是由左旋d=10超弦和左旋d=26玻色弦杂化而成,只包含可定向闭弦,有手征性和n=1超对称性,可以描述引力及杨-mills作用。

3)超弦唯象学

从唯象学角度来看,杂化弦型是重要的,e[,8]×e[,8]是由紧致16维右旋坐标场(26-10=16)而产生的,即由16维内部空间紧致化而得到,也就是说在紧致化后得到d=10,n=1,e[,8]×e[,8]的超弦理论。

但是迄今为止,物理学根据实验认定我们的现实空间是三维的,时间是一维的,把四维时空(d=4)作为我们的现实时空。因此我们必须把10维时空紧致化得到低能有效四维理论,为此人们认为从d=10维理论出发,通过紧致化有

m[10]→m[4]×k

此中k为c-丘流形,此内部紧致空间维数为10-4=6,m[4]为minkowski空间,从而得到4维minkowski空间低能有效理论。其重要结论有:

(1)由d=10,e[,8]×e[,8]超弦理论(m[10]中规范群为e[,8]×e[,8])紧致化为d=4,e[,6]×e[,8]、n=1超对称理论。

(2)夸克和轻子的代数ng完全由k流形的拓朴性质决定:为euler示性数χ,系拓朴不变量。

(3)对称破缺问题。已知超弦四维有效理论为n=1,规范群为e[,6]×e[,8]的超对称杨—mills理论,现实模型要求破缺。首先由第二个e[,8]进行超对称破缺,然后对大统一群e[,6]已进行破缺,从而引力作用在e[,8]中,弱、电、强作用在e[,6]中,实现了四种作用的统一。

4)t和s′对偶性

尽管五种超弦理论在广义相对论和量子力学统合上,取得了不少进展,但是五种超弦理论则是相互的,理论却是微扰的。尽管在超弦唯象学中,原则上-丘流形k一旦固定下来,在d=4时空中所有零质量费米子和玻色子(包括higgs粒子)就会被确定下来,但是-丘真空态总数则可多到数百万个,应该根据什么原则来选取-丘真空态,目前还不清楚。t对偶性和s对偶性的提出,正是五种超弦理论融通的主要桥梁。

在m理论的孕育过程中,对偶性起了重要作用。弦论中存在着一种在大小紧致空间之间的对偶性。例如ⅱa型弦在某一半径为r[,a]的圆周上紧致化和ⅱb型在另一半径为r[,8]的圆周上紧致化,两者是等效的,则有关系r[,b]=(m[2,s]r[,a])[-1]。于是当r[,a]从无穷大变到零时,r[,b]从零变到无穷大。这给出了ⅱa弦和ⅱb弦之间的联系。两种杂化弦e[,8]×e[,8]和so(32)也存在类似联系,尽管在技术性细节上有些差别,但本质上却是同样的。

a.sen证明,在超对称理论中,必然存在着既带电荷又带磁荷的粒子。当这一猜测推广到弦论后,它被称作为s对偶性。s对偶性是强耦合与弱耦合间的对称性,由于耦合强度对应于膨胀子场,杂化弦so(32)和i型弦可通过各自的膨胀子连系起来。

5)m理论和五种超弦、11维超引力间的联系

m理论作为10维超弦理论的11维扩展,包含了各种各样维数的brane,弦和二维膜只是它的两种特殊情况。m理论的最终目标,是用一个单一理论来描述已知的四种作用。m理论成功的标志,在于把量子力学和广义相对论的新理论框架中相容起来。

附图

上面给出五种超弦理论、11维超引力和m理论相容的一个框架示意图[16],即m理论网络。此网络揭示了五种超弦理论、11维超引力都是单一m理论的特殊情形。当然至今m理论的具体形式仍未给出,它还处于初级阶段。

6)推导量子黑洞的熵-面积公式。

在某些情形下,d-branes可以解释成黑洞,或者说是黑branes,其经典意义是任何物质(包括光在内)都不能从中逃逸出的客体。于是开弦可以看成是具有一部分隐藏在黑branes之内的闭弦。hawking认为黑洞并不完全是黑的,它可以辐射出能量。黑洞有熵,熵是用量子态来衡量一个系统的无序程度。在m理论之前,如何计算黑洞量子态数目是没有能力的。strominger和vafa利用d-brane方法,计算了黑-branes中的量子态数目,发现计算所得的的熵-面积公式,和hawking预言的精确一致,即bekenstein-hawking公式,这无疑是m理论的一个卓越成就。

对于具有不同角动量和电荷的黑洞所计算结果指出,黑洞遵从量子力学的一般原理,这说明黑洞和量子力学是十分融洽的。

2.圈量子引力方面

1)hamiltonian约束的精确解。

圈量子引力惊人结果之一,是可以求出hamiltonian约束的精确解。其关键在于hamiltonian约束的作用量,只是在s-纽结的结点处不等于零。所以不具有结点的s-纽结,才是量子einstein动力学求出的物理态。但是这些解的物理诠释,至今还是模糊不清的。

其它的多种解也已求得,特别是联系连络表示的陈-simons项和圈表示中的jones多项式解,j.pullin已经详细研究过。witten用圈变换把这两种解联系起来。

2)时间演化问题

人们试图通过求解hamiltonian约束,获得在概念上是很好定义的、并排除冻结时间形式来描述量子引力场的时间演化。一种选择是研究和某些物质变量相耦合的引力自由度随时间演化,这种探讨会导致物理hamiltonian的试探性定义的建立,并在强耦合微扰展开中,对s纽结态间的跃迁振幅逐级进行考查。

3)杨-mills理论的重正化问题

t.thiemann把含有费米子圈的量子引力,探索性地推广到杨-mills理论进行研究。他指出在量子hamiltonian约束中,杨-mills项可以严格形式给出定义。在这个探索中,紫外发散看来不再出现,从而强烈支持在量子引力中引进自然切割,即可摆脱传统量子场论的紫外发散困难。

4)面积和体积量度的断续性

圈量子引力最著名的物理成果,是给出了在planck标度的空间几何量具有分立性的论断。例如面积

此中lp是planck长度,j[,i]是第i个半整数。体积也有类似的量子化公式。

这个结论表明对应于测量的几何量算子,特别是面积算子和体积算子具有分立的本征值谱。根据量子力学,这意味着理论所预言的面积和体积的物理测量必定产生量子化的结果。由于最小的本征值数量级是planck标度,这说明没有任何途径可以观测到比planck标度更小的面积(~10[-66]厘米[2])和体积(~10[-99]厘米[3])。从此可见,空间由类似于谐振子振动能量的量子所构成,其几何量本征谱具有复杂结构。

5)推导量子黑洞的熵-面积公式

已知schwarzchild黑洞熵s和面积a的关系,是bekenstein和hawking所给出,其公式为:

附图

这里k是boltzman常量,是planck常量,g[,n]为牛顿引力常量,c为光速。对这个关系式的深层理解和由物理本质上加以推导,m理论已经作过,现在我们看下圈量子引力的结果。

应用圈量子引力,通过统计力学加以计算,krasnov和rovelli导出

附图

此处γ为任意常数,β是实数(~1/4π),显然如果取γ=β,则由式(3)即可得到式(2)。这就是说,从圈量子引力所得出的黑洞熵-面积关系式,在相差一个常数值因子上和bekenstein-hawking熵-面积公式是相容的。

bekenstein-hawking熵公式的推导,对圈量子引力理论是一个重大成功,尽管这个事实的精确含义目前还在议论,而且γ的意义也还不够清楚。

四、量子引力理论的哲学反思

我们从空间和时间的断续性、运动(相互作用)基本规律的统一性、物质结构基本单元的存在性三个方面进行哲学探讨。

1.空间和时间的断续性

当代基础物理学的核心问题,是在planck标度破除空间时间连续性的经典观念,而代之以断续性的量子绘景。量子引力理论对空间分立性的揭示和论证,看来是最为成功的。

超弦/m理论认为,我们世界是由弦和brane构成的。根据弦论中给出的新的不确定性关系,弦必然有位置的模糊性,其线度存在一有限小值,弦、膜、或brane的线度是planck长度,从而一维空间是量子化的。由此推知,面积和体积也应该是量子化的。二维面积量子的数量级为10[-66]厘米[2],三维体积量子的数量级为10[-99]厘米[3]等。

对于圈量子引力,其最突出的物理成果是具体导出了计算面积和体积的量子化公式。粗略说来,面积的数量级是planck长度lp的二次方,体积的数量级是lp的三次方。这就令人信服地论证了在planck标度,面积和体积具有断续性或分立性,从而根本上否定了空间在微观上为连续性的经典观念。

依据空间和时间量度的量子性,芝诺悖论就是不成立的,阿基里斯在理论上也完全可以追上在他前面的乌龟。类似的,《庄子·天下》篇中的“一尺之捶,日取其半,万世不竭”这个论断在很小尺度上显然也是不成立的。古代哲学中这两个难题的困人之处,从空间时间断续性来看,是由于预先设定了空间和时间的度量,始终是连续变化的经典性质。实际上在微观领域,空间和时间存在着不可分的基本单元。

2.运动(相互作用)基本规律的统一性

20世纪基础物理学巨大成功之一,就是建立了粒子物理学的标准模型,理论上它是筑基于量子规范场论的。这个模型给出了夸克、轻子层次强、弱、电作用的su(3)×su(2)×u(1)规范群结构,在一定程度上统一了强、弱、电三种相互作用的规律。但是它不含有引力作用。

超弦/m理论的探讨,在于构建包含引力在内的四种作用统一的物理理论。传递不同相互作用的粒子如光子(电磁作用)、弱玻色子(弱作用)、胶子(强作用)和引力子(引力作用),对应于弦的各种不同振动模式,夸克、轻子层次粒子间的作用,就是弦间的相互作用。在planck标度,超弦/m理论是四种基本作用统一理论的最佳侯选者,也就是所说的万物理论(theory of everything)的最佳侯选者。

在planck时期,物质运动或四种作用基本规律的统一性,正是反映了我们宇宙在众多复杂性中所显现的一种基本简单性。

3.物质微观结构的基本单元的存在性[17]

世界是由物质构成的,物质通常是有结构的,但是物质结构在层次上是否具有基本单元,即德谟克利特式的“原子”是否存在?这是一个长期反复争论而又常新的课题。当代几种不同的量子引力,尽管对某些问题存在着不同的见解,但是关于这个问题从实质上来看,却给出了一致肯定的回答。

超弦/m理论认为,构成我们世界的物质微观基本单元是具有广延性的弦和brane,并非所谓的只有位置没有大小的数学抽象点粒子。粒子物理学标准模型中的粒子,都是弦或brane的激发。弦和brane的线度是有限短的planck长度,它们正是构成我们世界的物质基本单元,即德谟克利特式的“原子”,这是超弦/m理论为现今所有粒子提供的本体性统一。

圈量子引力给出了在planck标度面积和体积的量子化性质,即断续的本征值谱,面积和体积分别存在着最小值。由于在圈量子引力中,脱离引力场的背景空间是不存在的,而引子场是物质的一种形态,因此脱离物质的纯粹空间也就是不存在的。空间体积和面积的不连续性和基本单元的存在,正是物质微观结构的断续性和基本单元的存在性的最有力论据。

总之,超弦/m理论和圈量子引力从不同的侧面,对量子引力的本质和规律作出了一定的揭示,它们在planck标度领域一致地得出了空间量子化和物质微观结构基本单元存在的结论。这无疑是人们在20世纪末期对我们世界空间时间经典观念的重大突破,也是广义相对论和量子力学统合的成果;同时更是哲学上关于空间和时间是物质存在的客观形式,没有无物质的空间和时间,也没有无空间和时间的物质学说的一曲凯歌!

【参考文献】

[1] g.horowitz.quantum gravity at the turn of the millennium.gr-qc/0011089.22.

[2] c.rovelli.loop quantum gravity.gr-qc/9710008 10.oct.1997.

[3] m.kaku.introduction to superstring and m-theory.second editon.springer.new york,1999.

[4] m.green,j.schwarz.anomally cancellations in supersymmetric d=10 gauge theory and superstring theory.phys.lett.149b(1984)11.

[5] d.gross,j.horvey,e.martine and r.rohm.heterotic string.phys.rev.lett 54(1985)502.

[6] p.candelas,g.horowitz a.strominger and e.witten.vacuum configurations for superstrings.nucl.phys.b258(1985)46.

[7] e.witten.non-commutative geometry and string field theory.nucl.phys.b276(1986)291.

[8] e.witten.string-string duality conjecture in various.dimensions.nucl.phys.b443(1995)307.

[9] c.baches.d-brane dynamics.phys.lett.b374(1996)37.

[10] a.strominger,c.vafa.microscopic origin of the bekenstein-hawking entropy.phys.lett.b379(1996)99.

[11] j.maldacena.the large-nlimit of superconformal field theories and supergravity.hep-th/9711200.

[12] c.rovelli.notes for a brief history of quantum gravity.gr-qc/0006061.23jan,20xx.

[13] c.rovelli,l.olin.descreteness of area and volume in quantum gravity.gr-qc/9411005.

[14] c.rovelli,l.olin.spin networks and quantum gravity.phys.rev.d52(1995)5743.

[15] c.rovlli,black hole entropy from loop quantum gravity.phys.rev.lett.74(1996)3288.

[16] j.gauntlett.m-theory,strings,duality and branes.qmw-ph-98-2.

[17] 现代物理学哲学问题。薛晓舟、张会。河南大学出版社,p157.1996.

霍金的宇宙哲学_其他哲学论文 篇八

著名物理学家霍金以他那乐观而顽强的精神活跃在宇宙学的最前沿,他的宇宙哲学思想十分丰富。本文剖析了霍金的无边界宇宙思想和虚时间概念,介绍了他对违背因果律的时间机器的有力而幽默的批评和他的时序保护猜想,评述了他的时间箭头、概率论、实证论、宇宙终极理论等哲学思想。

【关键词】霍金/无边界宇宙/虚时间/时间机器/概率论/实证论

【正文】

一、无边界宇宙和虚时间

大宇宙论已经取得了非常重大的成果,对大后百分之一秒直到今天的宇宙演化情况论述得已经十分清楚,并且得到了微波背景辐射等实际观测的强有力的支持。然而,在宇宙极早期遇到了极大困难。霍金(s.w.hawking)和彭罗斯(r.penrose)于1970年证明了“宇宙奇性定理”:在极一般的条件下,按照广义相对论,宇宙大必然从一个奇点开始。由此,他们共同获得1988年的沃尔夫物理奖。然而宇宙在大奇点处,一切科学定律包括广义相对论本身都失效了,连时空概念也失效了。所以奇点是不可能真实存在的,是非物理的。这就构成宇宙学最大的疑难:奇性疑难。因此,奇性定理也表明,广义相对论是不完备的,它无法告诉我们宇宙是如何开始的。霍金说:“广义相对论导致了自身的失效:它预言它不能预言宇宙。”[2]在宇宙极早期,整个宇宙非常微小,必须考虑量子效应。所以,对于宇宙奇性疑难,必须用量子引力论才能解决。

1983年霍金和哈特尔(j.b.hartle)发表论文“宇宙的波函数”[3],开创了量子宇宙学的研究。wWW.meiword.Com他们认为,宇宙的量子状态由波函数来描述,而这宇宙的波函数是惠勒-德威特(wheeler-dewitt)方程的解。这个波函数给出宇宙按照特征量分布的概率幅。他们创造性地建立了量子宇宙“微超空间模型”,正式提出“无边界宇宙”设想,即“宇宙的边界条件就是没有边界”。他们引入了“虚时间”(t→iτ)(这里i[2]=-1,即用虚数表示的时间)概念。因为物质和能量会使时空向其自身弯曲,在实时间方向就不可避免地导致奇性,时空在奇性处到达尽头。而虚时间方向与实时间方向成直角,空间的三个方向也都和实时间方向成直角,这表明虚时间的行为和在空间中的三个方向相类似。宇宙中物质引起的时空曲率就使三个空间方向和这个虚时间方向绕到后面再相遇到一起,形成一个闭合面。它们像是地球的表面,只不过多了两维。地球的表面具有有限的面积,但是它没有任何奇性、边界或边缘。霍金幽默地说:“我曾环球旅行过,而没有落到外面去。”只有当宇宙处于这种无边界状态时,科学定律才能确定每种可能历史的概率,才能确定宇宙应该如何运行。在虚时间里,没有使科学定律在该处失效的奇点,也没有需要乞求上帝的宇宙边缘。宇宙在虚时间中既没有创生也没有终结,它就是存在。量子力学中的奇特效应(例如隧道效应)可以看作是在“虚时间”中发生的。实时间中的演化是因果性的,而虚时间中的演化是随机的。人们甚至可以进一步猜测,宇宙中的一切随机行为都是起因于和虚时间相关的行为。如果你用虚时间来测量时间方向,你就会得到空间和时间之间的完全对称性,这在数学上是非常美妙和自然的观念。无边界假设就是利用这个数学的单纯化,导致所有可能的宇宙的初始条件中的最简单的理论。宇宙的量子态由对所有紧致的欧氏度规的历史在“虚时间”中求和的路径积分所定义。这历史是没有任何奇性或者任何开端或终结的,它由具有有限尺度却没有边界的弯曲空间组成。在其中发生的一切可完全由物理学定律所确定。于是在虚时间中出现的东西可被计算出来,而如果你知道宇宙在虚时间里的历史,你就能计算出它在实时间中的行为。用这种方法,我们可望得到一个完整的统一理论,它能预言宇宙的一切。这宇宙是有限的无边界的闭合宇宙模型。由此,我们得到一个“自含”的而且“自足”的宇宙。即宇宙是包容一切的,在它之外不存在任何东西。而且这宇宙不是可以任意赋予初始条件和边界条件的一般系统。霍金说:“有一次爱因斯坦问道:‘在建造宇宙时,上帝有多少选择呢?’如果无边界假设是正确的,在选取初始条件上,它就根本没有自由。它只有选择宇宙要服从的定律的自由。”[4]宇宙的演化服从科学定律表明理论的自治性,而宇宙的无边界性表明宇宙的自足性。量子宇宙学必须是自洽的和自足的,因此无边界宇宙是科学上的一种非常漂亮的理论。霍金和他指导的博士吴忠超先生证明了在无边界假设条件下,宇宙必须从零动量态向三维几何态演化,于是经典奇性被量子效应所抹平[5]。由此,奇性疑难得到解决。

无边界宇宙思想可以解释我们生活于其中的宇宙。这是一个各向同性的均匀的具有微小扰动的膨胀宇宙,它是具有一维时间和三维空间的洛伦兹时空,霍金认为它在其诞生时刻由一个四维的欧几里得空间进行解析延拓而来。1985年,霍金根据无边界假设,导出了宇宙在普朗克极早期的暴胀行为以及由量子涨落导致的宇宙结构的谱[6]。我们可以在微波背景辐射的涨落中观察到宇宙中那些微扰的谱。这些结果迄今与无边界假设相一致。在宇宙中的任何测量都可以按照宇宙的波函数来表述。这样,无边界假设使宇宙学成为真正的科学,因为人们可以预言任何观察的结果。

在这之前的1981年,霍金应梵蒂冈教廷科学院之邀,在宇宙学会议上首次发表了“无边界宇宙”的思想。会议之后,教皇接见与会者。按照西方的传统,在此时必须在教皇前行跪礼。但是当霍金驱动轮椅来到教皇前时,历史上奇异的一幕出现了,教皇离开其座位并跪下,使他便于脸对脸和霍金会晤。这使得四周的们目瞪口呆,且不说霍金自己所深爱的无边界宇宙理论正是无神论的彻底体现([2],译者序)。霍金说:“教皇告诉我们,在大之后的宇宙演化是可以研究的,但不应该去过问大本身,因为那是创生的时刻因而是上帝的事务。那时我心中暗喜,他并不知道我刚刚在会议上作过的演讲主题——时空是有限而的可能性,就表明着没有开端、没有创生的时刻。”([4],p.110)

无边界宇宙理论原来只能处理闭合宇宙的问题。但是,我们的宇宙究竟是闭合的还是开放的,这取决于现今宇宙的物质密度。ρ与临界密度ρ[,c]的比值,我们称这比值为宇宙学密度ω=ρ/ρ[,c]。当ω>1,引力场足够强,宇宙膨胀到某时将会收缩,它的曲率是正的,这就是闭合宇宙;当ω<1,曲率为负,就是开放宇宙,它将永远膨胀下去;当ω=1,曲率为零,是平直的临界情况,它也将膨胀下去。按照暴胀模型原来的理论,我们的宇宙恰好是ω=1的临界情况,这很不自然。我们的宇宙到底是什么情况?这有赖于对宇宙的实际观测,现在人们还说不清楚。因此,开放宇宙的可能性是存在的。1998年,霍金和图鲁克(n.turok)发表论文“无假真空的开放暴胀”[7],将霍金原来的闭合宇宙的量子论推广到开放情况。他们利用无边界假设,在一个最简单的暴胀模型中,经过路径积分的计算,导致现今的宇宙学密度ω≈0.01。这样,他们修改了原暴胀模型关于ω=1的临界预言,论证了开放暴胀宇宙的可能性。

现在霍金正继续发展他这美妙的无边界宇宙思想和虚时间概念[8-9]。

二、时序保护猜想——物理学定律严禁时间机器

1992年,霍金提出一个能维护时间次序的“时序保护猜想”[10]:物理学定律严禁时间机器。所谓“时间机器”,就是违背因果律而能将时间倒转回到过去的旅行机制。许多科幻小说都描写了这一神奇现象。最早于1937年,司托库姆(j.van stockum)发现了爱因斯坦场方程的一个解,它描述一个快速旋转的无限长柱体起着时间机器的作用。但是人们认为实际上不存在任何“无限长”的物体而否定了它的真实性。后来人们又通过虫洞、宇宙弦等奇异物制造了时间机器。但是物理学家已经证明,与实验吻合的物理学理论绝对不会违背因果律。1988年,霍金的好朋友索恩(k.s.thorne)和他的学生们的文章“虫洞、时间机器和弱能量条件”[11]发表,引起了很多评论和误解。一些报刊上出现标题为“物理学家发明时间机器”的文章。索思本人说:“就算物理学定律允许时间机器(事实上,我怀疑这一点),人类现在的技术能力离这时间机器的实现还远得很,比洞穴野人离太空旅行还要遥远。”[12]霍金对时间机器提出了严厉的批评。他幽默地说:“我们还不清楚在一个黑洞中究竟会发生什么。广义相对论的方程允许这样的解,允许人们进入一个黑洞并从其它地方的一个白洞里出来。白洞是黑洞的时间反演。这似乎为星际的快速旅行提供了可能性。麻烦在于这种旅行的速度太快了,以致于如果通过黑洞的旅行成为可能,则似乎无法阻拦你在出发之前已经返回。那时你可以做一些事,比如杀死你的母亲,因为她一开始就反对你进入黑洞。看来物理学定律严禁这种时间旅行,这也许对于我们(以及我们的母亲们)的存活是个幸事。似乎有一种时序保护机构,不允许向过去旅行,这使得这世界对于历史学家是安全的。如果一个人向过去旅行,将会发生的是不确定原理的效应在那里产生大量的辐射,这辐射要么把时空卷曲得太厉害以致不可能在时间中倒退回去,要么使时空在类似于大和大挤压的奇性处终结。不管哪种情况,我们的过去都不会受到居心叵测之徒的威胁。最近我进行的一些计算支持这个时序保护假设。其实,我们不能进行时间旅行的最好证据是,我们从来没有遭受到从未来来的游客的侵犯。”[13]霍金认为,大自然憎恶时间机器。大自然是通过真空涨落束的生长来维护时间顺序的。他指出:“当我们想做时间机器时,不论用什么样的事物(例如虫洞、旋转柱、宇宙弦或其它什么东西),在它成为时间机器前,总会有一束真空涨落穿过它,并破坏它。”他还说:“自由意志的概念和科学定律属于不同的范畴。如果人们想从科学定律推出人类行为的话,他就会在自参考系统的逻辑二律背反中陷入困境。这正如时间旅行若可能的话人们会遇到的麻烦,我认为永远不可能作时间旅行。”([13],p.97)

三、时间箭头

霍金论述了科学定律不能区分前进和后退的时间方向。这是因为粒子物理学中的cpt定理指出:科学定律在c、p、t联合变换下保持不变。(这里c是正、反粒子变换;p是宇称变换;t是时间反演变换。)而在正常情况下,科学定律在cp联合变换下不变,于是在t变换下也必然不变。霍金接着指出,至少存在三种“时间箭头”将过去与将来区分开来:第一,热力学时间箭头:无序度或熵增加的时间方向,这正是热力学第二定律所指明的时间方向;第二,心理学时间箭头:我们心理感觉时间流逝的方向,在这个方向上我们只能记住过去而不是未来;第三,宇宙学时间箭头:即宇宙在膨胀而不是收缩的方向。

霍金论证了心理学时间箭头与热力学时间箭头本质上是一致的。又通过无边界假设论证了在宇宙膨胀时,三种时间箭头是一致的。因为按照无边界假设,宇宙没有边界、边缘或奇点,所以时间的开端必须是光滑而有序的时空点。这就要求宇宙必然从一个非常光滑而有序的状态开始膨胀,随时间逐渐演化成无序的状态,于是就与热力学时间箭头一致。霍金还进一步论证了只有在膨胀相中才有适合智慧生命的条件。

然而,当宇宙将来可能坍缩时,情况如何呢?霍金曾经错误地认为,宇宙坍缩时,无序度会减小。即宇宙学时间箭头反向时,热力学时间箭头和心理学时间箭头也会跟着反向。霍金幽默地说:“处在收缩相的人们将以倒退的方式生活:他们在出生之前已经死去,并且随着宇宙收缩变得更年轻。”这实际上就等于承认了时间机器。这也就导致无论什么情况下,三种时间箭头都保持一致。后来在裴志(d.page)等人的启发下,霍金认识到自己犯了一个大错误。而导致他出错的原因是,他原以为收缩相仅仅是膨胀相的时间反演。那样,宇宙收缩变小时,应该回到光滑而有序的状态。但是裴志指出,无边界条件没有要求收缩相必须是膨胀相的时间反演。而且在一个稍微复杂的模型中,宇宙的坍缩与膨胀非常不同。实际上,无边界条件意味着宇宙在坍缩时无序度继续增加。即当宇宙时间箭头反向时,热力学时间箭头和心理学时间箭头并不会跟着反向。([4],pp.131-139)这实际上也进一步否定了时间机器的可能性。物理学决不会违背因果律。

四、实证论与实在论

1992年,霍金在剑桥凯尔斯学院作了关于科学哲学的讲演。他说:“在我认为存在一个有待于人们去研究和理解的宇宙的意义上,我愿承认自己是个实在主义者。但是没有理论,我们关于宇宙就不能说什么是实在的。因此,我认为物理理论不过是我们用以描写观察结果的数学模型。如果该理论是优雅的模型,它能描写大量的观测,并能预言新观测的结果,则它就是一个好理论。除此之外,问它是否和实在相对应就没有任何意义,因为我们不知道什么与理论无关的实在。这种科学理论的观点可能使我成为一个实证主义者。然而我所说的实证主义似乎是人们为描写宇宙而寻找新定律新方法仅有的可能的立场。因为我们没有和实在概念无关的模型。如果某物与我们用以解释它的理论或模型无关,何以知道它是实在的?而如果我们认为,实在依我们的理论而定,又怎么可以用实在来作为我们哲学的基础呢?”([13],p.30-34)这里,霍金明确指出了所谓“实在”的相对性、任意性和不确定性。因此科学哲学不能以此为基础。

霍金以相对论和量子力学以及宇宙大奇点和虚时间为例指出:“在科学的哲学方面很难成为实在主义者,因为我们认为的实在是以我们所采用的理论为前提。我能肯定,洛伦兹和费兹杰朗德在按照牛顿的绝对时空观来解释光速实验时都认为自己是实在主义者,因为这种时空观似乎和常识以及实验相对应。……我敢断定,爱因斯坦、海森伯和狄拉克对于他们是否为实在主义者或者工具主义者根本不在乎。他们只是关心现存的理论不能相互协调。在发展理论物理中,寻求逻辑自洽总比实验结果更重要。我想强调的是,至少对于一名理论物理学家而言,把理论视作一种模型的实证主义方法,是理解宇宙的仅有手段。”([13],p.34)因此,科学哲学的根基必须是也只能是逻辑自洽的理性的实证论。

五、确定论和概率论

霍金利用“虚时间”概念对史瓦西黑洞度规进行坐标变换,研究了相应的量子场论。利用在虚时间方向具有温度倒数的周期的欧氏时空上的所有场求和的路径积分,求出了相应温度下的热力学配分函数。从而得到黑洞具有的极其独特的内秉引力熵,它恰好是黑洞视界面积的四分之一。黑洞熵的存在,说明引力场不同于其它相互作用场,它使黑洞时空具有独特的拓扑结构。这引力熵说明黑洞引起信息丧失。由此,霍金指出存在一种新的不确定性:“信息丧失意味着,在黑洞消失之后,原来处于量子纯态的系统演化的终态就变成混合量子态,即不同纯态的一个系综。每一个纯态具有各自的概率。但是因为任何一种状态都不确定,不能利用和任何量子态干涉的办法把这终态的概率减小到零。这表明引力在物理中,引进了一种新水平的不确定性,这种不确定性超越于通常和量子理论相关的不确定性之上。在某种意义上,我们已经在微波背景辐射的涨落中观测到这种额外的不确定性。这表示科学决定论的终结,我们不能确定地预言未来。看来上帝在他的袖子里仍有一些令人无法捉摸的诡计。”([2],pp.55-56)“这样当爱因斯坦讲‘上帝不掷骰子’时,他错了。对黑洞的思索向人们提示,上帝不仅掷骰子,而且有时还把骰子掷到人们看不到的地方去,使人们迷惑不已。”([2],p.23)

六、宇宙终极理论

霍金相信宇宙是可以认识的,是可以完全理解的。他希望存在宇宙终极理论,并乐观地追求这理论。他说:“我不同意这样的观点,说宇宙是神秘的,是某种人们可有直觉但却永远不能完全和理解的东西。……我们对于宇宙还有大量无知和不解之处。但是我们过去尤其是一百年内所取得的进步,足以使人相信,我们能够完全理解宇宙。我们不会永远在黑暗中摸索。我们会在宇宙的完整理论上取得突破。在那种情形下,我们就真正成为宇宙的主宰。”([12],序言)“如果我们确实发现了一套完整的理论,它应该在一般的原理上及时让所有人(而不仅仅是少数科学家)所理解。那时,我们所有人,包括哲学家、科学家以及普普通通的人,都能够参加为何我们和宇宙存在问题的讨论。如果我们对此找到了答案,则将是人类理智的最终胜利——因为那时我们知道了上帝的精神。”([4],p.156)他又说:“也许这种希望只不过是海市蜃楼;也许根本就没有终极理论,而且即便有我们也找不到。但是努力寻求完整的理解总比对人类精神的绝望要好得多。”([13],序言)

霍金在追求宇宙终极理论的同时,又冷静地认识到,我们不可能穷尽对宇宙的完全认识。其实,人类的认识只能是相对真理,人类在无穷的相对真理的长河中不断探索,不断进步,不断逼近终极的绝对真理,但是不会走到尽头,也不可能预言宇宙的一切。霍金说:“即使我们发现了一套完整的统一理论,这并不表明我们能够一般地预言事件。因为第一我们无法避免不确定原理给我们的预言能力设立的极限。第二除了非常简单的情况,我们无法准确解出这理论的方程。在牛顿引力论中,我们甚至连三体运动问题都不能准确解出。我们在从数学方程来预言人类行为上只取得了很少的成功!所以,即使我们确实找到了基本定律的完整集合,在未来的岁月里,仍然存在发展得更好的近似方法,使我们在复杂而现实的情形下,能够完成对可能结果的有用预言的智慧的富有挑战性的任务。”([4],p.152)又说:“即使存在一个可能的统一理论,那只不过是一组规则或方程。是什么赋予这些方程以生命去制造一个为它们所描述的宇宙?通常建立一个数学模型的科学方法无法回答,为什么必须存在一个为此模型所描述的宇宙?”([4],p.156)这里霍金提出了宇宙学的最大问题,即宇宙的存在性问题。他强调:“一个完全的、协调的统一理论只是第一步,我们的目标是完全理解宇宙和我们自身的存在。”([4],p.152)

【参考文献】

[1] s.w. hawking and r. penrose. the singularities of gravitation collapse and coology. proceedings of the royal of lodon. 1970,a314:529.

[2] s.霍金:《时空本性》,杜欣欣、吴忠超译,湖南科学技术出版社,1996:70.

[3] j.b.hartle and s.w. hawking . wave function of the universe, phys. rev. 1983,d28(12):2960.

[4] s.霍金:《时间简史》,许明贤、吴忠超译,湖南科学技术出版社,1992:155.

[5] 吴忠超:无边界宇宙没有奇性,《中国科学》,a辑,1996,26(12):1105.

[6] s.w.hawking and j.g.moss, nucl.phys.1985,b224:180.

[7] s.w.hawking and neil turok. open inflation without false vacua,phys. lett.,1998,b425: 25-32.

[8] s.w.hawking, t.hertog, and h.s.reall. brane new world,phys. rev. 2000, d 62:043501.

[9] s.w. hawking and t.hertog.trace anomaly driven inflation, phys. rev. 20xx, d 63:083504.

[10] s.w. hawking. the chronology protection conjecture, phys. rev. 1992, d46:603.

[11] m.s. morris, k.s. thorne, and u. yurtsever. wormholes, time machines and the weak energy condition, phys.rev. lett, 1988,61:1446.

[12] k.s.thorne. black holes and time warps,.new york:w.w.norton & company, 1994.

[13] s.霍金:《霍金讲演录》,杜欣欣、吴忠超译,湖南科学技术出版社,1996:110-111.

“热寂说”疑案新论_其他哲学论文 篇九

【内容提要】一百多年来,“热寂说”曾引起广泛而持久的争论,甚至许多人误以为它早已有了结论。但无论从科学上看还是从哲学上看,以往的批判讨论均未能切中要害,缺乏说服力。大宇宙模型“炸开”了这一疑难,对它的讨论有了一个根本性的转向。本文通过对“热寂说”产生的历史过程进行考察,阐述了“热寂说”提出后在科学上和哲学上所引发的主要争论及其意义,并指出,大宇宙论虽然宣告了经典热力学“热寂说”的终结,但并不能避免宇宙未来在另一种意义上的“热寂”。“热寂”危机仍然存在,“热寂说”并未真正终结。

【关键词】热寂说/势力学第二定律/宇宙/熵/大理论

【正文】

“热寂说”是热力学第二定律的宇宙学推论,这一推论是否正确,引起了科学界和哲学界一百多年持续不断的争论。由于涉及到宇宙未来、人类命运等重大问题,因而它所波及和影响的范围已经远远超出了科学界和哲学界,成了近代史上一桩最令人懊恼的文化疑案。

一、“热寂说”是谁提出来的?

毫无疑问,“热寂说”是热力学第二定律的提出者提出的。热力学第二定律的提出者有两人,一位是英国的开尔文勋爵(lord kelvin)(即威廉·汤姆逊,w.thomson),另一位是德国的克劳修斯(r.clausius)。那么,谁是“热寂说”的提出者呢?国内学术界大多数人都认为,“热寂说”的提出者是克劳修斯。持此说的人一般都以恩格斯《自然辩证法》中反复提到的“克劳修斯的第二原理”的说法作为根据。另外一条根据则是,“熵”的概念是由克劳修斯提出来的,而“热寂说”是反映宇宙中熵不断增大的一种极限状态,所以“热寂说”是由克劳修斯提出的。wWw.meiword.COM

事实上,如果仔细考察一下有关“热寂说”的历史文献,我们就会发现以上说法有误,至少是不准确的。

1852年4月19日,开尔文在《爱丁堡皇家学会议事录》上发表的《论自然界中机械能散逸的普遍趋势》一文指出:“在现今,在物质世界中进行着使机械能散失的普遍趋势……在将要到来的一个有限时期内,除非采取或将采取某些目前世界上已知的并正在遵循的规律所不能接受的措施,否则地球必将开始不适合人类像目前这样居住下去”。[1]在这篇论文中,开尔文首次指出,从卡诺定理可以得出一个明显的结果,即当热从热的物体传到比较冷的物体时,就存在着机械能不可能完全恢复的耗散现象。在自然界中普遍存在的这种不可逆转的机械能的耗散趋向,必然造成宇宙中热量的不断增加。其直接后果是,地球必将“不适合人类像目前这样居住下去”。显然,开尔文在这里对宇宙热寂的思想作了充分的暗示。十年后,即1862年,开尔文发表《关于太阳热的可能寿命的历史考察》一文,该文曾被收入1902年出版的《科普讲演与致辞》一书。引人注目的是,在这篇文章中间,开尔文在“运动停止和整个物质宇宙的势能竭尽”这句话旁边加了一条附注:“见1852年4月19日爱丁堡皇家学会会议录”上他发表的“《论自然界中机械能散逸的普遍趋势》一文”。[2]这是开尔文提出“热寂说”的一条重要证据(当然,这一证据并不能排除开尔文与克劳修斯争夺提出“热寂说”优先权的可能性)。另一条重要证据则是赫尔姆霍兹(h.helmholtz)在1854年发表的《论自然力的相互关系》一文。在该文中,赫尔姆霍兹指出,“我们必须钦佩汤姆逊的聪明才智,他在一篇长期为人熟知的文章中,唯一地说热、物体的体积和压力能够识别出威胁宇宙的后果,虽然那肯定会发生在无限时间之后,会永远死亡”。[3]虽然目前还不能最终肯定赫尔姆霍兹所提到的原文即是《论自然界中机械能散逸的普遍趋势》,但起码据此可以初步判断开尔文在1854年之前就已经提出了宇宙“热寂”问题。

阎康年根据自己对开尔文原作的考证认为,尽管在开尔文看来自然界中机械能耗散不可逆转的普遍趋势必然会造成宇宙中热量的不断增加,但是,宇宙中热量增加后是否会引起热平衡乃至“热寂”,开尔文却没有得出明确的推论。[4]

从以上可以看出,开尔文即使在1852年没有明确提出“热寂说”,至少也是提出了“热寂”思想的。

但是,开尔文传记的作者舍林(h.sharlin)则认为,开尔文提出“热寂说”的时间应从1862年算起,因为他是在《关于太阳热的可能寿命的历史考察》这篇论文中才提出了“一个不可避免的宇宙静止和死亡状态”。[5]开尔文原文如下:“热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及势的枯竭。如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。但是,对宇宙中的物质广延设想一个界限是不可能的……”([2],p.349~350)在这里,开尔文十分明确地提出了宇宙“热寂说”。但必须注意的是,从这段话可以清楚地看出,开尔文提出“热寂说”时是十分谨慎的,他做了一个基本假设——宇宙是有限的,在这个有限的系统里,热力学第二定律是正确的,宇宙才会不可避免地出现热寂状态。但是他又认为,把物质广延的宇宙看成是一个有限的体系是不可能的。因此,在开尔文的心中,他实际上并不能肯定热力学第二定律是否可以推广到他并不真正了解的整个宇宙,并由此得出宇宙“热寂说”的推论。

从文献上看,第二个提出“热寂说”的人才是克劳修斯。他于1865年4月24日在苏黎世自然科学家联合会上作了一篇题为《关于热动力理论主要方程各种应用的方便形式》的演讲,该文同年发表于德国《物理和化学年鉴》。克劳修斯在这篇文章中第一次引进了“熵”的概念,证明了熵在绝热过程中的增加,并将热力学定律表述为“宇宙的能量保持不变,宇宙的熵趋于极大值”这样两个宇宙的基本定律。他指出,当宇宙中的一切状态改变都向着一个方向时,全宇宙必然要不断地趋近于一个极限状态。实际上,这里所说的“极限”状态就是指“宇宙热寂状态”。[6]

克劳修斯正式提出“热寂说”则是在1867年9月23日。当时,他在法兰克福举行的第41次德国自然科学家和医生的上作了一篇题为“关于热力学第二定律”的演说。在这篇轰动一时的著名演说中,克劳修斯明确指出:

“热总是从高温物体传到低温物体使得存在的温度差趋于消失,将逐渐地呈现越来越均匀的分布,而且在以太中的辐射热和物体所含的热之间也将出现一定的平衡。最后,物体分子的安排将接近于一定的状态,其中在相应的温度下总的离散度有最可能大的值。

我寻求把这整个过程用一个简单的定律表达出来,它将能确定地标志宇宙逐渐趋向的状态。我造了一个量,它与转化的关系跟能量与热和活的关系一样,即是,它等于所有的转化之和,这些转化是在使一个物体或是一群物体到达当前状态的过程中必然发生的。我叫这个量为熵。在一切正的转化大于负的转化的情形中,出现有熵增加。因此必然得出结论,在一切自然现象中熵的总值永远只能增加而不能减少,于是对到处不断进行的变化过程可以用下面的定律简短地表达:

宇宙的熵趋向于极大。

宇宙越是接近于这个熵是极大的极限状态,进一步变化的能力就越小;如果最后完全达到了这个状态,那就任何进一步的变化都不会发生了,这时宇宙就会进入一个死寂的永恒状态。”[7]

实际上,克劳修斯在追述自己的思想时曾指出,他早在19世纪50年代初就已经有“能量退降”、“宇宙热寂”的思想了,只是他考虑到这个结论与当时很流行的关于热的观点有很大偏离而没有拿出来。

从以上可以看出,“热寂说”的思想产生于19世纪50年代初,几乎是伴随热力学第二定律的产生而产生的,开尔文和克劳修斯都进行过相关思考。然而最先提出“热寂说”的应该是开尔文而非克劳修斯。这一点,其实克劳修斯本人也是这么看的,他在1865年作的《关于热动力理论主要方程各种应用的方便形式》的演讲中就曾明确指出,“这个定律在宇宙中的应用,已得出一个结论,那是w.汤姆逊首先得出的,因此我才发表我所说的论文”。[8]

值得注意的是,开尔文和克劳修斯提出“热寂说”时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个“有限”的体系;后者并没有做这样一种限定,而是毫无条件地推广到了整个宇宙。在对“热寂说”的提出者进行客观评价时,这种区别是要特别认真对待的。不过,阎康年认为,克劳修斯把熵增原理推广到整个宇宙是出于数学上的考虑——他曾在1865年的《关于热动力理论主要方程各种应用的方便形式》论文中提到过这一点,只不过是在1867年的那篇著名演讲中“有意或无意地忽视或回避了在两年前提出的前提条件”。([4],p.182)由于这一问题超出了本文讨论的范围,在此不做赘述。

实际上,由于当时科学发展水平的限制,“热寂说”问题既无法用新的理论做出合理的解释,也无法用观测和验证做出做后判决,无论开尔文还是克劳修斯,也无论他们是否加上限定条件,都不能从科学上最终解决这个问题,这无疑就为后来的科学界与哲学界留下了一场旷日持久的争论。

二、科学解还是哲学解?

“热寂说”一经提出,即在科学界引起了轩然。

首先对“热寂说”提出诘难的是麦克斯韦(j.maxwell)。1871年,他在《热理论》一书的末章《热力学第二定律的限制》中,设计了一个假想的存在物——“麦克斯韦妖”。麦克斯韦妖有极高的智能,可以追踪每个分子的行踪,并能辨别出它们各自的速度。这个设计方案如下:“我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度决不均匀,然而任意选取的任何大量分子的平均速度几乎是完全均匀的。现在让我们假定把这样一个容器分为两部分,a和b,在分界上有一个小孔,在设想一个能见到单个分子的存在物,打开或关闭那个小孔,使得只有快分子从a跑向b,而慢分子从b跑向a。这样,它就在不消耗功的情况下,b的温度提高,a的温度降低,而与热力学第二定律发生了矛盾”。[9]麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。

尽管麦克斯韦既没有实现也没有提出任何实际的实验来检验他的假说,但这个“热力学第二定律的破坏者”却困扰了科学界一百多年,成为科学家诘难热力学第二定律并进而反对“热寂说”的著名假想实验。与麦克斯韦佯谬有关的还有后来洛歇密(loschmid)提出的“可逆佯谬”和赛密罗(e.zermelo)提出的“再出现佯谬”等都对单向不可逆性和热力学第二定律提出了挑战,实际上也是对“热寂说”提出了挑战。

在“热寂说”提出后的数十年中,对其构成最大挑战的科学假说是波尔兹曼(l.boltzmann)的“涨落说”。波尔兹曼在对气体分子运动的研究中,最先对熵增加进行了统计解释。按照这种解释,热平衡态附近总存在着偶然的“涨落”现象,这种涨落现象并不遵从热力学第二定律。由此,波尔兹曼将气体分子运动论的观点推广到宇宙中,认为整个宇宙可以看成类似在气体状态的分子集团,围绕着整个宇宙的平衡状态则存在着巨大的“涨落”。即使在与整个广延的宇宙相比极其渺小的恒星系和银河系中,在短时期内也存在着这种相对的热平衡附近的“涨落”。按照这种假说,宇宙就必然会由平衡态返回到不平衡态。在这个区域,熵不但没有增加,而且是在减少。因此,宇宙也就不可能产生“热寂”。

波尔兹曼的“涨落说”曾广泛流传,许多人都把它作为反对“热寂说”的新发现。但天文学观测表明,至今没有任何有说服力的证据证明现在的宇宙是处在热平衡态并存在着上下“涨落”。由于缺乏事实依据,“涨落说”并没有真正从科学上解决宇宙“热寂”的问题。而且从逻辑上看,波尔兹曼的“涨落说”实际上是把宇宙“热寂”已经放在他的前提中了。因为他首先承认“涨落”是在平衡态附近发生的。而对于任何“涨落”,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛(h.reihenbach)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了宇宙中存在着熵的涨落现象,但由于同样缺乏观测证据支持而最终放弃。

20世纪60年代以来,以普里高津(i.prigogine)为首的布鲁塞尔学派在研究非平衡态热力学和统计物理学的过程中,找到了开放系统由无序状态转变为有序状态的途径,提出了耗散结构理论。这一理论曾被一些人用来反对“热寂说”。

所谓“耗散结构”是指一种远离平衡态的有序结构。根据热力学第二定律,系统处在热平衡态就是有最大的混乱度,此时熵值达到最高,系统即出现所谓“热寂”。而有序结构的出现即意味着熵的降低,系统便可“起死回生”。这显然与热力学第二定律相悖。如生命的发生和物种的进化等,都是从低级到高级、从无序到有序的变化,是一个熵不断降低的过程。耗散结构理论解决了这个问题。它认为关键在于系统必须是开放的,而且系统内有序结构的产生要靠外界不断供给能量和物质以及负熵流。

耗散结构理论提出不久,一些人即将其推广到整个宇宙,认为宇宙是一个无限发展的开放系统,它远离平衡态。由于它不断吸取负熵流,因而在宇宙的一些区域内,熵不但没有增加反而有减少的趋势。因此宇宙不可能变成完全无序的“热寂”状态。《》曾于1980年发表特稿,宣称普里高津的耗散结构理论帮助人类解决了一项科学上最扰人的似是而非的问题。[10]

然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图像和实验基础而不被天体物理学界所认可。

一百多年来,许多杰出的科学家都为解决宇宙“热寂”这一世界性疑案呕心沥血,提出了各种宇宙模型和假说,其中有一些是没有“热寂”的模型,如托尔曼(p.tolman)的相对论热力学中就已经没有了“热寂”,[11]但由于这些假说或模型存在着理论上不可克服的困难和缺乏宇宙观测事实的支持,最终都没有对“热寂说”构成威胁。这种情况一直延续到20世纪六、七十年代以后曾经沉寂的大宇宙论再度兴起。而这正是本文在最后要详细讨论的问题。

由于“热寂说”涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学尤其是主义哲学的深刻关注。一百多年来,恩格斯对“热寂说”的批判产生了深远的影响。在解释恩格斯反对热力学第二定律和“热寂说”的原因时,法国生物学家、哲学家莫诺(j.monod)曾经指出,“恩格斯因为看到热力学第二定律将危及人类以及人类的思维活动是宇宙演化的必然产物这一带有必然性的规律,所以他感到非反对它和否定它不可。在《自然辩证法》的导言中,他就是这么说的;而且他还直接从这个命题转到了热情洋溢的宇宙论预言,预示着如果不是现在的人类,无论如何也有思维能力的精神将永恒地反复地再现”。[12]

实际上,“热寂说”刚刚提出,恩格斯就在1869年3月21日致的信中指出,“这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就”,[13]用来作为“必须设想有上帝存在”的论证,而这种论证实质上是与辩证唯物论背道而驰的。1873年,恩格斯开始写作《自然辩证法》,在为该书准备资料的过程中,写下了许多批判“热寂说”的札记。由于一些原因,这些言论和札记当时并没有公开发表。50多年后,才随着《自然辩证法》的出版而为人所知。

恩格斯指出,“热寂说”由于断言宇宙中的一切运动都将最后转化为热,因而违反了辩证唯物主义的基本原理——运动不灭原理(它所对应的科学定律是能量守恒和转化定律,即热力学第一定律),“克劳修斯的第二原理等等,无论以什么形式提出来,都不外乎是说:能消失了,如果不是在量上,那也是在质上消失了。熵不可能用自然的方法消灭,但可以创造出来。宇宙钟必须上紧发条,然后才走动起来,一直达到平衡状态,而要使它从平衡状态再走动起来,那只有奇迹才行。上紧发条时所耗费的能消失了,至少是在质上消失了,而且只有靠外来的推动才能恢复”。[14]在这个的基础上,恩格斯联系科学史指出,“作为冷却的起点的最初的炽热状态自然就绝对无法解释,甚至无法理解,因此,就必须设想有上帝存在了。牛顿的第一推动就变成了第一炽热”。([13],p.267)恩格斯认为,这是历史的又一次重演,克劳修斯就这样像牛顿一样从形而上学滑向了唯心主义。

恩格斯以唯物辩证法的观点进一步指出,运动不灭的原理应该从量的不灭和质的不灭两方面来理解,只有这样运动才永远不会丧失其转变为它自身所能达到的各种不同运动形式的能力。因此,“现代自然科学必须从哲学那里采纳运动不灭的原理;它没有这个原理就不能继续存在”。([14],p.21)

恩格斯的这些论断实际上是辩证唯物主义思想在自然科学领域的直接应用,然而却引来了不少反对。最著名的莫过于莫诺的责难。他将唯物辩证法斥之为“万物有灵论的设想”的“翻版”,并说,“这种解释同科学不仅是风马牛不相及,而且是跟本不相容的。尽管如此,那些用了连篇废话大讲其‘空头理论’的辩证唯物主义者,还是经常企图用他们的想法来指导实验科学的发展。恩格斯本人虽然很熟悉他那个时代的科学,却以辩证法的名义拒绝了当时的两大发现:热力学第二定律和自然选择学说(尽管他很钦佩达尔文)”。([12],p.29)

然而,恩格斯事实上看到宇宙“热寂说”疑难的极其复杂性,认为仅仅依靠运动的数量是无限的(即不可穷尽的)这样一个一般的哲学命题,对解决这个问题是没有什么帮助的。因而,“只有指出了辐射到宇宙空间的热怎样变得可以重新利用,才能最终解决这个问题”,([14],p.261)并由此提出了如下的假说,“放射到太空中去的热一定有可能通过某种途径(指明这一途径,将是以后自然科学的课题)转变为另一种运动形式,在这种运动形式中,它能够重新集结和活动起来。因此,阻碍已死的太阳重新转化为炽热的星云的主要困难便消失承。”([14],p.23)

显然,恩格斯在这里明确指出了应该用哲学上的运动不灭原理和未来自然科学的发展来解决散失到太空中的热变成了什么这个问题,强调了哲学与科学的结合,既肯定了哲学的指导作用,又否定了哲学的代替作用。

也有观点认为,用运动不灭原理来拯救宇宙“热寂”在哲学上是“错误的”。错误的关键是混淆了运动和发展两个概念。运动有两种形式,一种是发展的运动,另一种是非发展的运动。发展的运动是非循环的和不可逆的,如生物的进化;非发展的运动则是循环的和可逆的,如钟摆的震荡。运动不灭原理只能保证宇宙将不停地运动,并不能保证这种运动是发展的。而“热寂”则是一种有运动而无发展的状态,它与运动不灭原理并不矛盾。所以,用运动不灭原理并不能“热寂说”。“在热力学中,运动和发展二者的性质分别由热力学第一定律及第二定律所规定。热力学第一定律就是运动不灭原理。热力学第二定律则是关于发展方向的规律。利用第一定律并不能排除第二定律的热死结论。”[15]

那么,是否就此认为应对恩格斯关于“热寂说”的论述进行重新评价呢?这一问题超出了本文讨论的范围,笔者将另外著文进行阐述。

继恩格斯后,彭加勒(j.poincaré)从科学方的角度对“热寂说”提出了尖锐的批评。1890年,彭加勒在《力学原理》一书中指出,任何力学模型只能局限在有限的系统内运动。在这个封闭的系统中,运动从有序开始,经过无序状态,最后必然再回到有序状态即初始状态。因此,与系统组态相联系的既定熵值,为了能回到初始状态就必然要减少。彭加勒认为,“热寂说”的出现是由于它的提出者们采用了当时流行的力学模型法造成的。因此,应在方上进行变革,要么承认热力学过程能回到初始状态,要么将热力学模型根本抛弃。

在批评“热寂说”的各种观点中,有两种观点影响最大,也最普遍。一种观点认为,热力学第二定律是从有限世界得来的,因而不能应用到无限的宇宙上。如丹皮尔(w.dampier)在其《科学史及其与哲学和宗教的关系》一书中就认为,“把热力学原理应用于宇宙理论,其有效性是可疑的。把从这样有限的例证中推出来的结果,应用到宇宙上去,是没有道理的,即令过去利用这些结果去预言有限的的或等温体系的情况很有成效”。[16]另一种观点则直接否认宇宙是一个“孤立系”。实际上,这两种观点本身是相互关联的,都预先设定了宇宙是一个“无限的”“非孤立系”的前提。并且一再企图证明,宇宙是漫无边际的物质,各个部分都是相互联系的,宇宙之外还有宇宙,因而不存在孤立部分。何祚庥认为,这些论证都不能证明人们永远不能把无限宇宙当作一个统一整体来把握。[17]况且,今天的科学还不能证明宇宙是否无限。因此,这种说法并不能驳倒“热寂说”。另一方面,认为从孤立系中得出的第二定律不能推广到无限宇宙去的论证,从逻辑上看也是不严密的。小范围内的自然规律外推到大范围在逻辑上并不必然错误,科学史上就有大量这样外推的先例,如绝对零度概念、热力学第一定律以及模型方法等。既然能把热力学第一定律作为证明辩证唯物主义关于世界普遍联系的根本规律推广到整个宇宙,那么又为什么不能将第二定律作同样的推广呢?事实上,热力学第一定律也没有在无限的条件下做过实验。必须承认,任何实践活动都是在有限的范围内取得的,把由此得出的结论外推不但是经常的,而且是必需的,甚至在处理复杂对象时是最有效的方法。因此,这种说法从逻辑上看也是不能驳倒“热寂说”的。也有人认为,外推第二定律之所以受到如此之多的责难,首先是因为人们认为它否定了主义关于发展的辩证法,其次是因为它本身“不合希望”性,是一条带有悲观色彩的定律,人们主观上希望它最好受到某种“制约”。[18]这种说法有点类似于莫诺的观点。

此外,中国和苏联也对“热寂说”进行过大规模的批判。由于这些争论基本上都是之争,而且这正是笔者另外一篇文章要讨论的问题,故本文不做进一步论述。

“热寂说”提出一百多年来,无论是在科学上还是在哲学上,各种争论此起彼伏,无休无止。有许多赞同者,也有许多反对者。他们都在孜孜不倦地寻求着这一疑难的最后答案。然而,最终都令无数英雄竞折腰。难怪大哲学家罗素(b.russel)发出这样悲观的感叹,“一切时代的结晶,一切信仰,一切灵感,一切人类天才的光华,都注定要随太阳系的崩溃而毁灭。人类全部成就的神殿将不可避免地会被埋葬在崩溃宇宙的废墟之中——所有这一切,几乎如此之肯定,任何否定它们的哲学都毫无成功的希望。唯有相信这些事实真相,唯有在绝望面前不屈不挠,才能够安全地筑起灵魂的未来寄托”。[19]即使是像控制论之父维纳(n.wiener)这样的科学巨匠,最终也“控制”不住自己沮丧的感情,几乎是在绝望中悲叹,“我们迟早会死去,很有可能,当世界走向统一的庞大的热平衡状态,那里不再发生任何真正新的东西时,我们周围的宇宙将由于热寂而死去,什么也没有留下……”([7],p.76)

那么,答案在哪里呢?科学解和哲学解,谁更真实、谁更符合人类的愿望呢?事实上,一个多世纪以来,各种哲学派别无休无止的争论亦无助于这一问题的最终解决。然而,科学仍然坚持走自己的道路。尽管人们承认哲学能给人以启发和提供思考的方向,但宇宙的未来只能依赖于科学自身的发展,任何超科学的回答都会把问题引向认识论的误区和歧途。物理学家诺维科夫(i.novikov)说了一句意味深长的话,“今天这样的争论已成为过去,是科学来确定世界真正结构的时候了”。[20]

三、“热寂说”“终结”了吗?

长期以来,对“热寂说”疑难的回答,无论从科学上看还是从哲学上看似乎都未能切中要害,缺乏说服力,因而一再爆发争论。然而20世纪六、七十年代以后,自从“大”宇宙模型逐渐得到天体物理学界公认以来,对“热寂说”疑难的讨论发生了根本性的转向,这一时期成了“热寂说”争论史上一个划时代的转折点。

在大量涌现的介绍大理论的文献中,特别令人瞩目的是,1994年10月,《科学美国人》杂志以“宇宙中的生命”为主题隆重推出了一期专刊,其中登载了四位著名科学家的综述,全面介绍了当代天体物理学界关于宇宙起源与演化问题的研究成果——大宇宙模型。该理论认为,宇宙大约是在100~200亿年以前,从高温高密的物质与能量的“大”而形成。随着宇宙的不断膨胀,其中的温度不断降低,物质密度也不断减小,逐渐衍生成众多的星系、星体、行星等,直至出现生命。宇宙大理论是20世纪科学研究的重大成就,是基于几十年的创新实验与理论研究的结果。因而获得了科学界的公认,并成为现代宇宙学的标准模型。

大宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3k微波背景辐射。

1929年,美国天文学家哈勃(e.hubble)在研究了前人测量的星系距离资料后发现,远星系光谱线的颜色要比近星系的稍红一些。哈勃仔细测量了这种红化,发现它呈系统性变化。而且,星系愈远,光谱线红移愈大。在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学——大理论的的基础。

支持大宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大发生一秒钟以后,宇宙是由极高温的基本粒子组成的“羹汤”,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23.6%的物质质量聚合成了氦核。英国皇家格林尼治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23.5%。这一结果与大的理论预言极为相符。

支持大理论的第三个证据是3k微波背景辐射的发现。大理论预言,现在的宇宙中应该存在着一种来自宇宙早期的均匀的、各向同性的微波背景辐射,它是宇宙早期的遗迹,频谱应该符合普朗克黑体辐射公式,温度约为3k。这一预言在1965年被射电文学家彭齐亚斯(a.penzias)和威尔逊(r.wilson)在宇宙观测中证实,此后亦为众多科学家进一步证实。这一结果表明,宇宙早期曾一度处于平衡态,处处都有相同的温度,而且物质分布也是相当均匀的。大之后,宇宙才逐渐偏离热平衡态。

早在大宇宙理论为科学界公认之前,一些学者即正确地指明了解决宇宙“热寂”疑难的方向,关键在于应从宇宙中是否存在热平衡态这一根本性问题着手。([17],p.77~78)现在,大理论直接证明了宇宙在膨胀,而宇宙在膨胀则是热力学和宇宙学相容的关键,那么在一个膨胀的宇宙中是否存在着热平衡态呢?

假定有两类物质,一类是辐射,另一类是粒子,辐射温度tr与粒子温度tm不一样。那么,按照经典热力学,经过一段时间以后,tr与tm必定相同。这是在静态空间中做出的结论。然而,假如上述空间是膨胀的,结论就完全不同了。由于在膨胀过程中,不同物质的温度降低的程度不一样,辐射温度降低较慢,粒子温度降低较快,就会造成tr大于tm而产生温差。这与经典热力学的结论正好相反。虽然这个温差会由于辐射与粒子之间的碰撞而消失,以至达到热平衡,但是由于达到平衡所需的时间比宇宙膨胀所需的时间要长,因而辐射和粒子之间就永远不可能达到热平衡。此时系统的熵尽管不断增加(这与热力学第二定律相符),但它离平衡态却越来越远。而宇宙中发生的正是这种变化。

另一方面,宇宙膨胀的原因是由于引力的作用。有引力作用的热力学与无引力作用的热力学得出的结论完全不同。在不考虑引力的经典热力学中,加热则体系升温,冷却则体系降温,热容量是正值。而在一个自引力体系中情况刚好相反,加热则体系变冷,放热则体系升温,热容量是负值。而负热容物体的存在对于热力学来说具有根本性的影响。在一个体系中,如果同时存在着正热容物体和负热容物体,那么这个体系就具有极大的不稳定性。稍有扰动,平衡就会彻底遭到破坏而产生温差。只要有自引力体系存在,原则上就不存在稳定的热平衡,而宇宙间的天体或天体系统大多数正是这种自引力系统。尽管自引力系统中熵是增加的,但由于没有热平衡,因而熵的增加是无止境的,永远都没有极大值。[21]

因此,“热平衡的存在对整个热力学是至关重要的,热平衡是热力学的出发点。而对于引力起决定作用的体系,实际上不存在热力学意义上的热平衡态,而是不稳定的状态”。([15],p.92)这种现象在静态宇宙模型中是不可能发生的,也是开尔文和克劳修斯等人没有料想到的。

于是,人类终于从百年梦魇中醒来,爆发出热情的欢呼,“宇宙不但不会死,反而会从早期的热寂状态(热平衡态)下生机勃勃地复sū@①”,[22]“热寂说的一页,已被翻过去了”!([15],p.92)

然而,人类的欢呼似乎来得早了一点。尽管热力学意义上的宇宙“热寂”状态永远不会到来,但宇宙的命运却不会因此而变得更加令人乐观。宇宙的结局完全取决于它的初始条件,宇宙的创生与终结始终紧密相连。大理论发现了宇宙起源的真相,同时也预言了它遥远的未来。

在大理论中有一个极其重要的参量ω=ρ[,0]/ρ[,c],其中ρ[,c]是与哈勃常数密切相关的一种宇宙临界密度,ρ[,0]是现在的宇宙密度。若ρ[,0]<ρ[,c],即ω<1,表明宇宙是膨胀的,并且一直膨胀下去;若ρ[,0]>ρ[,c],即ω>1,表示宇宙起初膨胀,到达一定时刻后,就将转化为收缩。若ρ[,0]=ρ[,c],则宇宙处于两者之间的临界状态。[23]由于大多数人承认的观测结果是ω<1,因此宇宙一直永远膨胀下去成为最可能的一种状态。假使如此,未来所有恒星上的热核反应都将逐渐停止,留下的将是各种各样的宇宙“熔渣”——黑矮星、中子星和黑洞,而宇宙的背景辐射温度将不断下降,以至于无限地趋近于绝对零度,[24]最终达到另一种意义上的“冷寂”。宇宙另一种可能的状态是,当膨胀达到最高点,背景辐射的温度降到最低,此时宇宙开始收缩,温度又重新上升。当宇宙不断收缩至愈来愈接近它的最后阶段时,环境条件同大后不久起支配作用的那些条件越来越相似,宇宙又重新回到处于“热寂”状态的基本粒子“羹汤”状态。这实际上是一个反演过程。在宇宙暴缩的最后时刻,引力成为占绝对优势的作用,所有的物质都将因挤压而不复存在,包括时空本身在内的一切有形的东西统统将被消灭,只剩下一个时空奇点。[25]无论宇宙最后出现哪一种状态,其结果对人类来说都将是灭顶之灾。

这就是大理论为人类预言的宇宙未来和世界末日。由于这一理论也不合人们的期望,因而当它提出之日起同样也遭到了来自各方面的反对,并认为它是一个“倒了头”的宇宙“热寂说”。[26]然而,自然规律毕竟不以人的意志为转移,人类必须正确对待,最好的心态是,“我们决不能忽视物之有生亦必有死的事实,死亡或许正是为创生不得不付出的代价”。([25],前言,p.3)

当然,还存在着一些其他并非毫无科学根据的宇宙模型,也许会带给人类新的光明和希望。人类不应该气馁。“我们的后代也许还有数十亿年甚至数万亿年的时间来对付这场最后的大。在这段时间里,生命能够扩展到整个宇宙……并对它加以控制,因此他们可以调整自己的位置,支配一切可能的资源来对抗这场大危机”。([25],p.93~94)

无论如何,人类决不甘心坐以待毙,而科学也将一如既往地走自己的路,总有一天会给人类一个明晰的答案。

【参考文献】

[1] w.thomson.mathematical and physical papers.cambridge,1882,(1).513~514.

[2] lord kelvin.popular lectures and addresses.1902,(1).349~350.

[3] e.youmans.the correlation and conservation of forces.new york:d.aleton and co.,1876.转引自:阎康年.热力学史.济南:山东科学技术出版社,1989,178.

[4] 阎康年.热力学史.济南:山东科学技术出版社,1989,177.

[5] h.sharlin.lord kelvin:the dynamic victorian.the pennsylvania state university press,1979,171.

[6] 王竹溪.“热寂说”不是热力学第二定律的科学推论.:自然科学争鸣,1975,(1),62.

[7] r.克劳修斯.关于热力学第二定律(1867年9月23日在美因河畔法兰克福举行的第41次德国自然科学家和医生的上发表的演说).:自然科学争鸣,1975,(1),74~75.

[8] r.clausius.annalen der physik und chemie.1865,(band cxxv).转引自:阎康年.热力学第二定律和热寂说的起源与发展.:物理,1986,(2),126.

[9]  w.爱伦伯格.麦克斯韦妖.吴之仪译.上海:上海出版社,摘译.1976,(1),94~95.

[10] new york times.new york:1980,1,1.

[11] 茨津.宇宙学热力佯谬的历史.中国科学技术大学天体物理研究室译.:科学与哲学,1980,(6),82.

[12] j.莫诺.偶然性和必然性.上海外国自然科学哲学著作编译组译.上海:上海出版社,1977,30~31.

[13] ,恩格斯.恩格斯全集(第32卷).:出版社,1974.267.

[14] 恩格斯.自然辩证法.:出版社,1971,261~262.

[15] .宇宙为何不热死.熵与交叉科学.:气象出版社,1988,88.

[16] w.丹皮尔.科学史及其与哲学和宗教的关系.李珩译.:商务印书馆,1975,403.

[17] 何祚庥.论所谓“热寂说”的错误.:哲学研究,1956,(2),81.

[18] 巴日诺夫等.热力学第二定律和宇宙发展问题.中国科学技术大学天体物理研究室译.:科学与哲学,1980,(6),84.

[19] p.戴维斯.宇宙的最后三分钟.傅承启译.上海:上海科学技术出版社,1995,9~10.

[20] i.诺维科夫.黑洞和宇宙.黄天衣等译.南京:江苏出版社,2000,136.

[21] 赵凯华.“热寂说”的终结.:大学学报(哲学社会科学版),1990,(4),117~123.

[22] 赵凯华,罗蔚茵.热学.:高等教育出版社,1998,310.

[23] 何祚庥.有关宇宙论的哲学问题.:红旗,1987,(5),14.

[24] s.温伯格.宇宙最初三分钟.张承泉等译.:中国对外翻译出版公司,2000,119.

[25] p.戴维斯.宇宙的最后三分钟.傅承启译.上海:上海科学技术出版社,1995,93.

[26] 苏汝铿.大宇宙学是倒了个头的热寂说.上海:上海出版社,摘译.1976.(1).1~6.

计算:一个新的哲学范畴_其他哲学论文 篇十

计算或算法,长期以来一直是作为数学的专利概念,如今随着计算机日益广泛而深入的运用,已经泛化到了人类的整个认识领域,并上升为一个极为普适的哲学范畴,成为人们认识事物、研究问题的一种新视角、新观念和新方法。本文旨在简要论述计算、算法这一哲学范畴的确立。

“计算”是一个无人不知无人不晓的数学概念。无论是人们的日常生活,还是平常的生产实践和科学研究,都离不开计算。同时,“计算”也是一个历史悠久的数学概念,它几乎是伴随着人类文明的起源和发展而起源和发展的。但是,真正能够回答计算的本质是什么的人恐怕不会太多。应该说,在20世纪30年代以前,还没有人能够说得清计算的本质是什么,以及什么是可计算、什么是不可计算的等问题。30年代中,由于哥德尔、丘奇、图灵等数学家的工作,人们终于弄清楚了计算的本质,以及什么是可计算的和什么是不可计算的等根本性问题。由此也就形成了一个专门的数学分支——递归论或可计算性理论。在此我们就是以这一理论为背景,概括出计算的本质,并阐明其他一些根本性问题。

计算首先指的就是数的加减乘除,其次则为函数的微分、积分、方程的求解等等;另外还包括定理的证明推导。抽象地说,所谓计算就是从一个符号串f变换成另一个符号串g。比如说从符号串12+3变换成15,这就是一个加法计算。如果符号串f是x•x,而符号串g是2x,从f到g的计算就是微分。定理证明也如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子(由英文字母及标点符号组成的符号串),而g为含义相同的中文句子,那么从f到g就是把英文翻译成中文。WWW.meiword.COm这些变换间有什么共同点?为什么把它们都叫做计算?

为了回答究竟什么是计算、什么是可计算性等问题,人们采取的是建立计算模型的方法。从30年代到40年代,数理逻辑学家相继提出了四种模型,它们是递归函数、λ演算、图灵机和波斯特系统。这种种模型各不相同,表面上看区别很大,它们完全是从不同的角度探究计算过程或证明过程的。但事实上,这几种模型却是等价的,即它们完全具有一样的计算能力。在这一事实基础上,最终形成了如今著名的丘奇—图灵论点:凡是可计算的函数都是一般递归函数(或都是图灵机可计算的,或都是λ演算可计算的,或都是波斯特系统可计算的)。这就确立了计算与可计算性的数学含义。这一表述过于抽象,下面我们给出一个比较直观的说法:所谓计算,就是从已知符号串开始,一步一步地改变符号串,经过有限步骤,最后得到一个满足预先规定的符号串的变换过程。现已证明:凡是可以从某些初始符号串开始而在有限步骤内计算的函数与一般递归函数是等价的。这就是说,所有可计算的函数都是通过符号串的变换来实现其计算过程的,即计算就是符号(串)的变换。(1)

与计算具有同等地位和意义的基本概念是算法。从算法的角度讲,一个问题是不是可计算的,与该问题是不是具有一个相应的算法是完全一致的。一般而言,算法就是求解某类问题的通用法则或方法。也就是一系列计算规则或程序,即符号串变换的规则。

正是这样一个原本只是数学中的基本概念,如今却成为各门科学研究的一种基本视角、观念和方法,上升为一种具有世界观和方特征的哲学范畴。

我们认为,人类最早把计算作为一种哲学性观念和方法而不仅是一种数学观念和方法,并自觉运用到有关领域的研究中,是一些人工智能的专家们做出的,尤其是在后来的认知科学研究中很明显地表现出这一倾向。由于纽威尔、西蒙、福多、明斯基等一大批学者的努力,物理符号系统假说、心灵的表达计算理论,心脑层次假说等相继提出。这些理论的一个共同主题就是:思维就是计算(认知就是计算)。他们明确主张:思维是一种信息加工过程,亦即计算过程,这种计算就是指某种符号操作或加工,指在能对其提供语义解释的符号代码的形式表达式上所进行的受规则制约的变换,如问题求解这种思维活动就是通过一定的算法对初始态空间进行操作,直达到目标态空间。有人更进一步主张:心灵有一套程序或一组规则,类似于控制计算机的程序,思维是一种包括对单词在内的符号的操作。(2)

除了思维、认知可看作是一种计算,一些研究视觉认知理论的学者把视觉也看作是一种计算。这主要是来自马尔的《视觉计算理论》。这一理论认为,在计算理论层次上,视觉信息处理过程由三种内部表象表征:描述图像光强度与局部几何结构的要素图;描述以观察者为中心的物体可见表面的朝向、轮廓线、深度及其他性质的二维半图;识别和理解物体的三维表象。这个理论把视觉过程理解为功能模块(像元空间、图像空间、景物空间)的变换。这意味着视觉计算的基本单位是符号表象。3在此基础之上,后来人们又提出了视觉拓扑计算理论等各种视觉计算理论。其共同点是均认为视觉过程就是一种计算过程,但是对它是一种什么样的计算还存有较大分歧。

在对认识、思维、视觉等内容进行计算主义研究的同时,人们确立了大脑就是一台计算机的信念:大脑的生物结构是其硬件,大脑的运作规律是其软件,大脑的(广义)思维过程就是其计算过程。20多年前的“计算机能否思维”的问题已经演化为当今的“人脑是否计算”的问题。更重要的是,“思维就是计算”这已不仅仅是一个哲学性的命题,而且已成为科学方意义上的一个科学假设。人们早已从科学意义上探究思维的计算本质,计算已成为当前认知科学中占主导地位的一种基础观念和研究方法,人们试图从计算的角度揭示出思维、意识以及整个大脑的全部奥秘。

把计算作为哲学性观念和方法运用到具体学科研究中的另一个范例是与生命科学相关的一些研究。这主要体现在20世纪80年代以来,人工生命科学、遗传算法理论和dna计算机等新型学科的相继涌现。这些学科或理论的共同之处就在于都是以计算作为自己研究的观念和方法,主张生命就是一种算法,一个程序,一个能够实现自我复制、自我构造和自我进化的算法。人工生命的基本信条是:生命的特征并不存在于单个物质之中,而存在于物质的组合之中。生命的规律是一种动力形式的规律,这种规律于45亿年前地球上形成的任何特定的碳化物细节之外。即生物体的“生命力”存在于分子的组织(软件)之中,而不是存在于分子本身。人工生命就在于用计算或算法的观念与方法探索生物学领域中的奥秘。把生命与计算机类比,似乎是19世纪机械论在当今的延续,看起来有背于时代发展的潮流。但人工生命的奠基者朗顿认为,答案就在于进一步的伟大洞见之中:生命系统这台计算机具有与通常意义上的机器全然不同的组织形式,有生命的系统几乎总是自下而上的,从大量及其简单的系统群中突现出来,而不是工程师自上而下设计的那种机器。朗顿强调说:“最为惊人的认识是:复杂的行为并非出自复杂的基本结构。确实,极为有趣的复杂行为是从极为简单的元素中突现出来的”。4这就是说,生命包含着某种能够超越纯物质的能力,不是因为有生命的系统里被某种物理和化学之外的一种生命本质所驱动,而是因为一群遵循简单的互动规则的简单物体能够产生永远令人吃惊的行为效果。生命就是这样一种生化机器,只要启动这台机器,而不是把生命注入这台机器,即将这台机器的各个部分组织起来,让它们产生互动,从而便具有了“生命”。生命就是这样一种算法。算法对于生命的意义,就在于以过程或程序描述代替对生物的状态或结构描述,将生命表达为一种算法的逻辑,把对生命的研究转换成对算法的研究,特别是把对真实生命的研究转换成对人工生命的研究。1994年11月美国科学家阿德勒曼在《科学》上公布的dna计算机理论,更是从另一个角度揭示了生命就是算法,进化就是计算的观念。5dna是生命的基石,任何生命类型的所有特征都以严格的规则编码在其dna序列上,不管是生命的结构,还是生命的过程,在这个意义上它是一个信息库或数据库。另外,dna所有的行为都是以程序化、模块化的形式表现,在这个意义上它又是一个程序库。无论它是作为信息库还是程序库,dna都具有基本的计算特征。而生物体中所有现象的基本形式都是dna的复制、切割、粘贴,这一事实深刻表明,生命本身就是由一系列复杂的计算或算法组成的。生命系统就是一台以分子算法为组织法则的多层次生物计算机,dna计算机就是对生命这种自然计算机的一种表征。从前,分子算法,如自复制自动机、胞格自动机、遗传算法、人工生命等全都是在电子计算机上实现的,dna计算机概念的出现是分子算法的化学实现的开端。这种立足于可控的生物化学反应或反应系统,无疑更加有力地直接地表明了生物现象与过程的计算特征。正如有人所言:dna计算宣称数学处于生命的核心。

运用计算、算法观念和方法研究认知问题和生命系统,有着深刻而普适的科学方意义,它们是人们运用算法观念和方法研究其他自然现象或自然系统的两个有益的重要范例。如今,计算或算法的观念与方法已经深入到宇宙学、物理学、化学乃至经济学、社会学等诸多领域。计算、算法已经成为人们认识事物、研究问题的一种基本的普适的观念和方法,人们的科学实践,已经使计算、算法上升到哲学性的观念和方法。在这一现实背景之下,我们以为,把计算、算法作为一种哲学范畴正式提出并引入哲学已是十分必要的。这不仅是因为已经有了一些成功的范例,而且还有着更深层的学理:生命、大脑是最复杂的自然现象之一,是自然界进化的最高代表。因此,我们完全有理由猜测:整个自然界也是按算法构成的,是按算法演化的。现实世界之万事万物只不过是算法的复杂程度的多样性。从虚无到存在、从非生命到生命、从感觉到意识、思维,或许整个世界的进化过程就是一个计算复杂性不断增长的过程。这就是说,自然界就是一台巨型计算机(硬件),任何一种自然过程都是自然规律(软件)作用于一定条件下的物理或信息过程(计算过程),其本质上都体现了一种严格的计算和算法特征。生命系统作为自然界中最复杂最有特色的系统,它也就是形形的自然计算机中的一种。这或许就是人工生命与dna计算理论所蕴含的最重要的哲学道理。

把计算、算法作为一个哲学范畴,还有着哲学史上的渊源关系。也许人们还没有忘记,在2500多年前,一位名叫毕达哥拉斯的古希腊人曾向世人宣称:万物皆数。今天,我们何以不能说:万物皆算法。严格地说,当年毕达哥拉斯率先提出的“数”这个重要范畴,并不是一个纯粹哲学性范畴,而是一个从数的角度寻求世界万物之本原,考察事物生成演化过程,由自然科学思维方式与哲学思维方式相互融合的过渡性范畴。这种观念在近代和现代科学与哲学中得到了充分的继承和发扬。这说明,哲学范畴在其生成、演化和发展的过程之中,总要受到各个历史时期数学发展程度、数学思维方式的影响和规定。这或许可以称为哲学范畴的数学规定,正因为如此,当今计算机科学的发展,使得我们完全可以把毕达哥拉斯的“数”向前推一大步。毕达哥拉斯哲学在当代有了更深刻更丰富的内含。

最后我们要指出的是,已经泛化到整个科学领域中的计算、算法这个概念,完全具有哲学范畴的基本特征。众所周知,哲学范畴是反映事物本质属性和普遍联系的基本概念,人类理性思维的逻辑形式。它是人类在一定历史时代理论思维发展水平的标示器,是帮助人们认识和把握自然现象和社会现象之网的网上扭结;是对自然、社会和思维发展过程最本质、最普遍的联系的表征。哲学范畴对各门具体科学都具有普适的哲学方意义。如今,人们在各方面都开始用算法的观念来看待问题、用计算的方法来解决问题,不正表明计算与算法的一种范畴性吗?历史上每次重大的科技进步,都要改变当时的哲学范畴,有时甚至是直接把科学中的基本概念移植到哲学中。当今计算机科技对哲学的影响也不例外。这正是有人所说的哲学范畴的科技命运。因此,及时总结和概括当代科技成果,把最为精华的人类理念上升为一种哲学范畴,不仅是哲学范畴自身发展之所需,更是各门科学文化进一步发展所必须。只有渗透着时代最主要、最有效的观念和方法的科学与文化,才能真正体现时代之精神,成为时代之主流。

参考文献

(1) 莫绍揆.递归论.科学出版社,1987年。

(2) 邱仁宗.当代思维研究新论.中国社会科学出版社,1993年。

(3) (美)d.马尔.视觉计算理论.科学出版社,1988年。

(4) (美)m.沃尔德罗普.复杂.三联书店,1997年。

(5) l.m.adleman. molecular computation of solutions to combinatorial problems. science.1994.266:1020-1024.63

《对量子力学互补性诠释的理解_其他哲学论文十篇.docx》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

看了对量子力学互补性诠释的理解_其他哲学论文十篇的人,还看了:

园林论文模板

引言人类从野蛮走向文明,由此产生了城市。城市为人类社会的发展提供了必要的物质条件的同时,人口的剧增以及大量人工设施的建设也带来了严重的环境污染。城市的现代化发展带来了一系列威协人类生存的全球性问题,从而有人题出向“后现代”过渡的口号,即“建设可持续发展的社会”[1]。生态哲学是一种新的哲学范式,它以人与自然界的关系为基础,在问题的时候采用的是生态系统整体性观点、复杂性思惟,他为我们提供了新的观察全

科技论文样本

批判学派是19世纪和20世纪之交在物理学革命前夕和初期活跃于物理学舞台上的一个科学学派,其代表人物是马赫、彭加勒、奥斯特瓦尔德、迪昂、皮尔逊。批判学派的对立面是当时的主流学派——力学学派(机械学派)。鉴于作者已就批判学派的历史贡献、哲学根源、历史归宿作过论述 ,本文拟要点一下批判学派的根本特征、主要共性和思想差异。一、批判学派的根本特征批判学派否认物理学单单是经典力学的简单继续。他们稀望摆脱传统的

2022年哲学论文集锦

论文 关键词: 科学 妍究 创新 哲学  特征 论文摘要:本文界定了具有创新性科学妍究的概念;揭示了人们在从事具有创新性的科学妍究过程所出现的少许重要特征,并了出现这些特征的内再本制;剖析了影响创新性妍究的主要茵素;题出了促进创新性妍究得以成功的主要手段。 在科学妍究过程中,即使是妍究者做了许多重腹性或摸仿性的工作,但只要在少许重要的方面题出了与众不同并具有独创性的新观念或新见解,这也是创新性妍究

哲学论文模板

摘要:本文从亚里士多德关于形上对象的论述着手,从柏格森、卡尔纳普对形上与科学在语言上的差别的阐释以及胡塞尔的先验现象学的非超验性言说中,得出形上的对象、语言、使命的超验性的结论,并考察了形上书写、形上本文的独特性和个别形上体系的共同性,最后展开了对形上的人文性、形而上学中的形下倾向的批判,把形而上学与哲学区别开来。  关键词:形上对象、超验性、形上语言、形上使命、形上书写、形上本文、个别形上体系、

关于哲学论文模板集锦

摘 要:哲学是对智慧的追求。智慧至少应包含知识和责任两个方面。一个聪明的人知道对知识的责任。哲学的知识是为理解世界的实在和人生的意义服务的,而人生的意义和道德的原理需要由哲学知识来论证。传统的形而上学尽管有种种缺陷,但它们作为理性论证的世界图式曾为这种论证做出过重大贡献。后现代主义在批判形而上学的时候,把哲学的这种责任也抛弃了,这是导致当代哲学和道德危机的一个重要因素。 关键词:哲学知识;智慧;形

最新文章

热点推荐